The Euclidean algorithm

Saad Mneimneh

1 The greatest common divisor

Consider two positive integers $a_{0}>a_{1}$. The greatest common divisor of a_{0} and a_{1}, denoted $\operatorname{gcd}\left(a_{0}, a_{1}\right)$ is the largest positive integer g such that $g \mid a_{0}$ and $g \mid a_{1}$, i.e. g divides both a_{0} and a_{1}.

Observation 1: The $\operatorname{gcd}\left(a_{0}, a_{1}\right)$ always exists.
Observation 2 (Euclid): Let $a_{0}=q_{1} a_{1}+r$ where $0 \leq r<a_{1}$ (note that this representation is always possible and unique $)$, then $\operatorname{gcd}\left(a_{0}, a_{1}\right)=\operatorname{gcd}\left(a_{1}, r\right)$. The proof of this fact consists of showing that $d \mid a_{0}$ and $d\left|a_{1} \Leftrightarrow d\right| a_{1}$ and $d \mid r$.

2 The Euclidean algorithm

The Euclidean algorithm finds the gcd recursively by computing the sequence

$$
a_{0} a_{1} \ldots a_{k} a_{k+1}
$$

where

$$
\begin{gathered}
a_{i}=a_{i-2}-\left\lfloor\frac{a_{i-2}}{a_{i-1}}\right\rfloor a_{i-1}=a_{i-2}-q_{i-1} a_{i-1} \\
a_{k+1}=0
\end{gathered}
$$

The sequence $\left\{a_{i}\right\}$ is strictly decreasing and, therefore, $a_{k+1}=0$ is guaranteed. We can easily show that $a_{k}=\operatorname{gcd}\left(a_{0}, a_{1}\right)$.

$$
\operatorname{gcd}\left(a_{0}, a_{1}\right)=\operatorname{gcd}\left(a_{1}, a_{2}\right)=\ldots=\operatorname{gcd}\left(a_{k-1}, a_{k}\right)
$$

Since $a_{k+1}=0, a_{k-1}$ is a multiple of a_{k} and hence $\operatorname{gcd}\left(a_{k-1}, a_{k}\right)=a_{k}$.
Example: The $\operatorname{gcd}(300,18)$ is 6.

3 Running time

We have the following recurrence:

$$
a_{i}=a_{i-2}-q_{i-1} a_{i-1}
$$

which we can rewrite as

$$
a_{i-2}=a_{i}+q_{i-1} a_{i-1}
$$

and since $q_{i-1}=\left\lfloor\frac{a_{i-2}}{a_{i-1}}\right\rfloor \geq 1$,

$$
\begin{gathered}
a_{i-2} \geq a_{i-1}+a_{i} \\
a_{k-1} \geq 2 \\
a_{k} \geq 1
\end{gathered}
$$

Compare this to the famous Fibonacci sequence:

\[

\]

It can be easily seen that $F_{k+2-i} \leq a_{i}$ (for $i \leq k$). Therefore, $F_{k+2} \leq a_{0}$. This means k cannot be very large. In deed, we can show by induction that $c \phi^{n-1} \leq F_{n}$ where ϕ is the golden ratio and c is some positive constant.

$$
\begin{gathered}
c \phi^{k+1} \leq a_{0} \\
k \leq \log _{\phi} \frac{a_{0}}{c}-1
\end{gathered}
$$

We conclude that k is logarithmic in a_{0} and thus linear in the length of a_{0} (in bits for instance). We also conclude that the worst case occurs when a_{0} and a_{1} are consecutive Fibonacci numbers. Here's an example of the sequence when $a_{0}=13$ and $a_{1}=8$.

4 Extended Euclidean algorithm

Instead of simply computing the sequence $\left\{a_{i}\right\}$, we can compute $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ such that:

$$
a_{i}=a_{0} x_{i}+a_{1} y_{i}
$$

This can be done inductively by starting with $x_{0}=1, y_{0}=0$, and $x_{1}=0$, $y_{1}=1$. Then

$$
a_{i}=a_{i-2}-q_{i-1} a_{i-1}=a_{0} x_{i-2}+a_{1} x_{i-2}-q_{i-1}\left(a_{0} x_{i-1}+a_{1} y_{i-1}\right)
$$

By regrouping terms we get,

$$
a_{i}=a_{0}\left(x_{i-2}-q_{i-1} x_{i-1}\right)+a_{1}\left(y_{i-2}-q_{i-1} y_{i-1}\right)
$$

which leads to the following recurrences:

$$
\begin{aligned}
x_{i} & =x_{i-2}-q_{i-1} x_{i-1} \\
y_{i} & =y_{i-2}-q_{i-1} y_{i-1}
\end{aligned}
$$

Since $\operatorname{gcd}\left(a_{0}, a_{1}\right)=a_{k}$, we now have that $\operatorname{gcd}\left(a_{0}, a_{1}\right)$ is a linear combination of a_{0} and a_{1}.

5 Applications

Consider a positive integer n and let $a \in\{1, \ldots, n-1\}$ be such that $\operatorname{gcd}(n, a)=1$ (n and a are relatively prime or coprimes). The extended Euclidean algorithm can be used to find the multiplicative inverse of a, denoted a^{-1}, i.e. a positive integer $a^{-1} \in\{1, \ldots, n-1\}$ such that

$$
a a^{-1} \equiv 1 \bmod n
$$

Example: Let $n=18$ and consider the set integers less than 18 that are relatively prime to $18,\{1,5,7,11,13,17\}$. The following represent multiplications modulo 18.

$$
\begin{gathered}
1 \cdot 1=1 \\
5 \cdot 11=1 \\
7 \cdot 13=1 \\
17 \cdot 17=1
\end{gathered}
$$

Here's how to find the multiplicative inverse. Since $\operatorname{gcd}(n, a)=1$ then,

$$
1=n x+a y
$$

where y is not necessarily in $\{1, \ldots, n-1\}$.

$$
\begin{gathered}
a y \equiv 1 \bmod n \\
a(y \bmod n) \equiv 1 \bmod n
\end{gathered}
$$

Therefore, $a^{-1}=y \bmod n$ is the multiplicative inverse of a.
The concept of a multiplicative inverse is used in cryptography.

RSA

1. generate two large primes p and q
2. compute $n=p q$
3. find $e \in\{1, \ldots,(p-1)(q-1)-1\}$ such that $\operatorname{gcd}((p-1)(q-1), e)=1$
4. publish (e, n)
5. compute the secret d such that $e d \equiv 1 \bmod (p-1)(q-1)$ (multiplicative inverse)

Given a message $x(x<n)$, compute $y=x^{e} \bmod n$. This is the encryption of x. Only the one who has secret d can decrypt the message, by computing $x=y^{d} \bmod n$ (in principle, one could compute the $e^{t h}$ root of y modulo n, but we don't know of an easy way to do this without the knowledge of d).

Now we prove that $x=y^{d} \bmod n$.

$$
y^{d}=x^{e d}=x^{k(p-1)(q-1)+1}=\left[x^{k(q-1)}\right]^{p-1} x
$$

We now use the following celebrated result:

Fermat's Theorem

if p is prime and p does not divide a, then $a^{p-1} \equiv 1 \bmod p$.
Therefore, if p does not divide $x^{k(p-1)}$, then $\left[x^{k(q-1)}\right]^{p-1} \equiv 1 \bmod p$, which means $\left[x^{k(q-1)}\right]^{p-1} x \equiv x \bmod p$. If p divides $x^{k(p-1)}$, then p must divide x, which means $x \equiv 0 \bmod p$ and hence $\left[x^{k(q-1)}\right]^{p-1} x \equiv 0 \bmod p$. In both cases, we conclude that

$$
y^{d} \equiv x \bmod p
$$

and by switching the roles of p and q, we also get:

$$
y^{d} \equiv x \bmod q
$$

Both p and q are primes with $n=p q$; therefore,

$$
\begin{gathered}
y^{d} \equiv x \bmod n \\
y^{d}-x \equiv 0 \bmod n \\
\left(y^{d} \bmod n\right)-x \equiv 0 \bmod n
\end{gathered}
$$

Since $y^{d} \bmod n$ and x are both less than n, they must be equal.
The extended Euclidean algorithm can also be used to obtain a constructive proof for the Chinese Remainder Theorem.

Chinese Remainder Theorem
Let $x \equiv a_{i} \bmod n_{i}$ for $i=1 \ldots k$, and let $n_{1}, n_{2}, \ldots, n_{k}$ be pairwise coprimes. Then x has a solution, and all solutions are congruent modulo $n=\prod_{i=1}^{k} n_{i}$.

Note that n_{i} and n / n_{i} are coprimes and hence must satisfy:

$$
1=n_{i} r_{i}+\left(n / n_{i}\right) s_{i}
$$

Let $e_{i}=\left(n / n_{i}\right) s_{i}$ (which can be found using the extended Euclidean algorithm). Then,

$$
\begin{gathered}
e_{i} \equiv 1 \bmod n_{i} \\
e_{i} \equiv 0 \bmod n_{j}, j \neq i
\end{gathered}
$$

Now set $x=\sum_{i=1}^{k} e_{i} a_{i}$. It is easy to see that x satisfies $x \equiv a_{i} \bmod n_{i}$ for all $i=1 \ldots k$. In fact, any integer congruent to x modulo n does. Furthermore, if x and y are both solutions, then $x-y \equiv 0 \bmod n_{i}$ for all $i=1 \ldots k$, which implies that $x-y \equiv 0 \bmod n\left(\right.$ because the n_{i} 's are pairwise coprimes).

