
The Euclidean algorithm

Saad Mneimneh

1 The greatest common divisor

Consider two positive integers a0 > a1. The greatest common divisor of a0 and
a1, denoted gcd(a0, a1) is the largest positive integer g such that g|a0 and g|a1,
i.e. g divides both a0 and a1.

Observation 1: The gcd(a0, a1) always exists.

Observation 2 (Euclid): Let a0 = q1a1 + r where 0 ≤ r < a1 (note that this rep-
resentation is always possible and unique), then gcd(a0, a1) = gcd(a1, r). The
proof of this fact consists of showing that d|a0 and d|a1 ⇔ d|a1 and d|r.

2 The Euclidean algorithm

The Euclidean algorithm finds the gcd recursively by computing the sequence

a0 a1 . . . ak ak+1

where
ai = ai−2 −

⌊ai−2

ai−1

⌋
ai−1 = ai−2 − qi−1ai−1

ak+1 = 0

The sequence {ai} is strictly decreasing and, therefore, ak+1 = 0 is guaran-
teed. We can easily show that ak = gcd(a0, a1).

gcd(a0, a1) = gcd(a1, a2) = . . . = gcd(ak−1, ak)

Since ak+1 = 0, ak−1 is a multiple of ak and hence gcd(ak−1, ak) = ak.

Example: The gcd(300,18) is 6.

300 18 12 6 0

3 Running time

We have the following recurrence:

ai = ai−2 − qi−1ai−1

which we can rewrite as
ai−2 = ai + qi−1ai−1

and since qi−1 =
⌊ai−2

ai−1

⌋ ≥ 1,

ai−2 ≥ ai−1 + ai

ak−1 ≥ 2

ak ≥ 1

Compare this to the famous Fibonacci sequence:

Fn = Fn−1 + Fn−2

F3 = 2

F2 = 1

F0 F1 F2 F3 . . . Fk+i−2 . . . Fk+2

0 1 1 2
0 ak ak−1 . . . ai . . . a0

It can be easily seen that Fk+2−i ≤ ai (for i ≤ k). Therefore, Fk+2 ≤ a0.
This means k cannot be very large. In deed, we can show by induction that
cφn−1 ≤ Fn where φ is the golden ratio and c is some positive constant.

cφk+1 ≤ a0

k ≤ logφ

a0

c
− 1

We conclude that k is logarithmic in a0 and thus linear in the length of a0

(in bits for instance). We also conclude that the worst case occurs when a0 and
a1 are consecutive Fibonacci numbers. Here’s an example of the sequence when
a0 = 13 and a1 = 8.

13 8 5 3 2 1 0

4 Extended Euclidean algorithm

Instead of simply computing the sequence {ai}, we can compute {xi} and {yi}
such that:

ai = a0xi + a1yi

This can be done inductively by starting with x0 = 1, y0 = 0, and x1 = 0,
y1 = 1. Then

ai = ai−2 − qi−1ai−1 = a0xi−2 + a1xi−2 − qi−1(a0xi−1 + a1yi−1)

By regrouping terms we get,

ai = a0(xi−2 − qi−1xi−1) + a1(yi−2 − qi−1yi−1)

which leads to the following recurrences:

xi = xi−2 − qi−1xi−1

yi = yi−2 − qi−1yi−1

Since gcd(a0, a1) = ak, we now have that gcd(a0, a1) is a linear combination
of a0 and a1.

5 Applications

Consider a positive integer n and let a ∈ {1, . . . , n−1} be such that gcd(n, a) = 1
(n and a are relatively prime or coprimes). The extended Euclidean algorithm
can be used to find the multiplicative inverse of a, denoted a−1, i.e. a positive
integer a−1 ∈ {1, . . . , n− 1} such that

aa−1 ≡ 1 mod n

Example: Let n = 18 and consider the set integers less than 18 that are rel-
atively prime to 18, {1, 5, 7, 11, 13, 17}. The following represent multiplications
modulo 18.

1 · 1 = 1

5 · 11 = 1

7 · 13 = 1

17 · 17 = 1

Here’s how to find the multiplicative inverse. Since gcd(n, a) = 1 then,

1 = nx + ay

where y is not necessarily in {1, . . . , n− 1}.

ay ≡ 1 mod n

a(y mod n) ≡ 1 mod n

Therefore, a−1 = y mod n is the multiplicative inverse of a.

The concept of a multiplicative inverse is used in cryptography.

RSA

1. generate two large primes p and q

2. compute n = pq

3. find e ∈ {1, . . . , (p− 1)(q − 1)− 1} such that gcd((p− 1)(q − 1), e) = 1

4. publish (e, n)

5. compute the secret d such that ed ≡ 1 mod (p− 1)(q − 1) (multiplicative
inverse)

Given a message x (x < n), compute y = xe mod n. This is the encryption
of x. Only the one who has secret d can decrypt the message, by computing
x = yd mod n (in principle, one could compute the eth root of y modulo n, but
we don’t know of an easy way to do this without the knowledge of d).

Now we prove that x = yd mod n.

yd = xed = xk(p−1)(q−1)+1 = [xk(q−1)]p−1x

We now use the following celebrated result:

Fermat’s Theorem
if p is prime and p does not divide a, then ap−1 ≡ 1 mod p.

Therefore, if p does not divide xk(p−1), then [xk(q−1)]p−1 ≡ 1 mod p, which
means [xk(q−1)]p−1x ≡ x mod p. If p divides xk(p−1), then p must divide x,
which means x ≡ 0 mod p and hence [xk(q−1)]p−1x ≡ 0 mod p. In both cases,
we conclude that

yd ≡ x mod p

and by switching the roles of p and q, we also get:

yd ≡ x mod q

Both p and q are primes with n = pq; therefore,

yd ≡ x mod n

yd − x ≡ 0 mod n

(yd mod n)− x ≡ 0 mod n

Since yd mod n and x are both less than n, they must be equal.

The extended Euclidean algorithm can also be used to obtain a constructive
proof for the Chinese Remainder Theorem.

Chinese Remainder Theorem
Let x ≡ ai mod ni for i = 1 . . . k, and let n1, n2, . . . , nk be pairwise coprimes.
Then x has a solution, and all solutions are congruent modulo n =

∏k
i=1 ni.

Note that ni and n/ni are coprimes and hence must satisfy:

1 = niri + (n/ni)si

Let ei = (n/ni)si (which can be found using the extended Euclidean algo-
rithm). Then,

ei ≡ 1 mod ni

ei ≡ 0 mod nj , j 6= i

Now set x =
∑k

i=1 eiai. It is easy to see that x satisfies x ≡ ai mod ni for
all i = 1 . . . k. In fact, any integer congruent to x modulo n does. Furthermore,
if x and y are both solutions, then x − y ≡ 0 mod ni for all i = 1 . . . k, which
implies that x− y ≡ 0 mod n (because the ni’s are pairwise coprimes).

