Generating large primes

Saad Mneimneh

1 A simple paradigm

Generating a large prime is an important step in the RSA algorithm. We can
generate a large prime by repeatedly selecting a large random integer and testing
it for primality. We stop when a prime number is found. Therefore, assume that
a large integer n is given, and choose a rational number o < 1 to perform the
following algorithm:

repeat
generate a random integer p € [n®, n|
until p is prime

There are two important aspects of the above algorithm. First, it is random-
ized in the sense that our random choices determine its running time (through
the number of iterations). Second, it relies heavily on a method for primality
testing, which will dominate the running time of a single iteration (making a
random choice takes O(logn) time since it requires generating that many bits).

2 Analysis of number of iterations

Let us first determine the probability of choosing a prime in [n*,n]. We use a
famous result in number theory:

Prime number theorem
Let m(n) be the number of primes < n. Then
n

This is an asymptotic characterization, i.e. lim, .o W = 1. Since we
are dealing with large values of n, making the approximation 7(n) ~ - is

Inn
valid. Therefore,

o

n n « a—1
. o Tm abm _n—-n%/a 1 1-n*"'/a 1
Pp & [n?,n] s prime) & 00 = = o = T o

Since o < 1, n®~! =~ 0 for large values of n, and hence

P(p € [n“,n] is prime) ~ o

Let p1,p2,...,pm be a sequence of randomly generated numbers such that
Dm i the first prime. Then m has a geometric distribution and E[m] = lnn.
Therefore, the expected running time in terms of iterations is O(logn). Note
that this is an expected running time, not a deterministic one. Yet, we can show
that the running time is O(f(n) logn) with high probability for every increasing
function f(n). The probability that a prime number is not found in f(n)lnn
trials is

3 Primality testing

Given a positive integer n, we would like to test if it is prime. Here’s a trivial
algorithm for this task based on finding a divisor for n:

fori<—2ton
if n =0 (mod 1)
then return false
return true

The running time of this algorithm is O(n) which is exponential in the size
of n (logn bits). A simple improvement can be achieve by observing that if n is
composite, it must have a divisor < /n. This is because a composite number is
the product of two smaller numbers; therefore, n = ab where a < b < n. Hence,

a < +/n.

for i — 2 to |/n]
if n =0 (mod 7)
then return false
return true

But the running time is still exponential in the size of n. To obtain a sub-
stantial improvement, we rely on another famous result in number theory:

Fermat’s little theorem
If n is prime and 1 < a < n, then a"~! = 1(modn).

Therefore, if for some 1 < a < n, a”~! # 1(modn), then a is a witness for
the compositeness of n. However, if a”~! = 1(modn), Fermat’s little theorem
does not assert the primality of n. For example, 2341~ = 1(mod 341); however,
341 = 11-31 is not prime. Fermat’s theorem can be strengthened to show that n
is prime if every 1 < a < n satisfies a”~! = 1(modb), but we are not interested
in an algorithm that tests every 1 < a < n for obvious reasons. One idea is to
test few values for a randomly chosen in [1,n — 1J.

fori«—1tok
choose a random a € [1,n — 1]
if a®1 # 1 (mod n)
then return false
return true

We will appreciate the effectiveness of this test by proving the following
fact: Let 1 < a < m be such that ged(n,a) = 1 (this also means that a has a
multiplicative inverse modulo n). If a®~! # 1(modn), then the same is true for
at least (n — 1)/2 values in [1,n — 1]. Let b"~! = 1(modn), then

(ab)" 1 =a" " ="t # 1(modn)

Furthermore, if ab = ac(modn), then b = ¢ (simply multiply each side by
the multiplicative inverse of a). We have just proved that every integer b €
[1,n—1] that passes the Fermat test is associated with a unique integer ab mod n
that fails the test. Therefore, at least half the integers in [1,n — 1] fail the test.
The probability of not choosing one of them is 2% which is minuscule if k£ = 50
or k = 100.

But what if n is composite but a”~! = 1(modn) for every a € [1,n— 1] that
is relatively prime to n? Such n is called a Carmichael number. Carmichael
numbers are rare, the smallest one is 561 = 3 - 11 - 17. The Fermat test above
can be modified to make at least (n — 1)/2 values in [1,n — 1] fail the test
for Carmichael numbers. This modification is know as the Miller-Rabin algo-
rithm for primality testing. Their idea is to first compute a* mod n instead of
a™ ! mod n, where n — 1 = 2%y and u is odd. Given a%, a™ ! is then computed
through the following sequence:

¥ = a20u,a21u7a22u’ » -7a21u _ an—l

Each term can be obtained by squaring the previous one (all modulo n of
course). This idea is based on the following observation: If n is prime, then
either a* = 1 or some term in the above sequence is = —1. Here’s a proof:

2? = 1(modn) = z* — 1 = 0(modn) = (z — 1)(z + 1) = 0(modn)

Therefore, n divides either (z — 1) or (z 4+ 1). The only way this can happen is

for £ = 1(modn) or z = —1(modn). In other words, there is no root of 1 that

is not 1 or —1. Consequently, since a™ ! = 1, either a* = 1 or some term in the
i i+1

sequence is = —1. Therefore, if a®"* # +1 and a? = 1, n must be composite.

For example, 561 — 1 = 2%35. For a = 7, a®> = 241(mod561). This will give
the following sequence:
241 298 166 67 1

Therefore, 672 = 1(mod 561), an indication that 561 cannot be prime. Some
number theory (that we omit) tells us that at least (n — 1)/2 values for a €
[1,n — 1] must reveal such an instance (a non-primitive root of 1).

Miller-Rabin
let n — 1 = 2% (u odd)
fori—1tok
choose a random a € [1,n — 1]
o+ a* mod n
forj«—1tot
;= x?_l mod n
ifx; =1and z;_1 # £l
then return false
then return false
return true

Since t = O(logn), the running time of this algorithm is dominated by the
computation of a* mod n, which at the surface, requires O(n) multiplications.
The next section illustrates how this can be computed in O(logn) time.

4 Repeated squaring

There is a recursive algorithm to compute a* using only O(log «) multiplications.

1 u=10
a* =1 (a*/?)? weven
a-a""' wuodd

Consider the sequence {u} given by the values of u over the entire execution
of this algorithm:
UGy ULy - oy Uy =0

where uy = u and either u; = u;—1/2 or u; = u;—1 — 1.
Consider the sequence {b} obtained from {u} by dropping the odd terms:
bo,b1,...,b-=0
where by < u and b; < b;_1/2, and compare this sequence to the sequence {c}:
co=u,c1 =u/2,co =ufd,... c

where 1 < ¢ < 2. It is trivial to show that b; < ¢; and, therefore, by, = 0 if it
exists, hence r < k. Sincem <2r+1, m <2k + 1.

2 =u =k =logu—logcy

Therefore, k < |logu| and m < 2|logwu] + 1 which shows that the algorithm
requires O(logu) multiplications. However, to be fair we must make sure that
all intermediate numbers do not exceed n; otherwise, multiplications cannot be
considered to be comparable in complexity. This can be achieved by an easy fix
since what we need eventually is a" mod n anyway.

1 u=0
a*modn =1 (a“?)2modn u even
a-a*"'modn wuodd

