
Making faster multiplications

Saad Mneimneh

1 A simple divide-and-conquer inspired by Gauss

Consider the multiplication of two complex numbers:

(a + bi)(c + di) = ac + (bc + ad)i− bd

which involves four multiplications: ac, bc, ad, and bd. Gauss observed that
those quantities can be obtained by performing three multiplications only: ac,
bd, and (a+b)(c+d), then the term (bc+ad) can be obtained as (a+b)(c+d)−
ac − bd. Since multiplication of n bit numbers required Θ(n2) bit operations,
compared to Θ(n) for addition and subtraction, it may be worth reducing the
number of multiplications. Consider two n bit numbers u and v, and let us
write

u = a · 2n/2 + b

v = c · 2n/2 + d

where a, b, c, and d are n/2 bit numbers. For simplicity, we may assume that
n is a power of 2, but we can use floors and ceilings to adjust for an n that is
not a power of 2.

uv = (a · 2n/2 + b)(c · 2n/2 + d) = ac · 2n + (bc + ad)2n/2 + bd

Using Gauss’ idea, we can perform three multiplications to obtain all terms.
Note that multiplication by a power of 2 is really just a shift operation; therefore,
if we apply this idea recursively, we obtain a recurrence for the time:

T (n) = 3T (n/2) + Θ(n)

2 The Master theorem

Consider the following recurrence:

T (n) =
{

Θ(1) 1 ≤ n ≤ n0

aT (n/b) + Θ(g(n)) n > n0



where:

• a ≥ 1

• b > 1

• g is asymptotically positive

Then,

• g(n)/nlogb a = O(n−ε) for some ε > 0 ⇒ T (n) = Θ(nlogb a)

• g(n)/nlogb a = Θ(logk n) for some k ≥ 0 ⇒ T (n) = Θ(nlogb a logk+1 n)

• g(n)/nlogb a = Ω(nε) for some ε > 0 and ag(n/b) ≤ cg(n) for some c < 1
and n > n0 ⇒ T (n) = Θ(g(n))

We usually interpret n/b as either bn/bc or dn/be. The proof of the Master
theorem can be found in the book Introduction to Algorithms by CLRS.

3 A better Master theorem, the Bazzi method

Consider the following recurrence:

T (n) =
{

Θ(1) 1 ≤ n ≤ n0∑k
i=1 aiT (n/bi) + Θ(g(n)) n > n0

where:

• n0 > bi and n0 ≥ bi/(bi − 1) for 1 ≤ i ≤ k

• ai > 0 for 1 ≤ i ≤ k

• bi > 1 for 1 ≤ i ≤ k

• k ≥ 1

• g(n) is non-negative and satisfies:

u ∈ [n/bi, n] ⇒ c1g(n) ≤ g(u) ≤ c2g(n)

for 1 ≤ i ≤ k where c1 and c2 are positive constants1

Then,

T (n) = Θ
(
xp

(
1 +

∫ n

1

g(u)
up+1

du
))

where p is the unique solution of
∑k

i=1 aib
−p
i = 1.

Again, we usually interpret n/bi as either bn/bic or dn/bie. The proof of this
theorem can be found at http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf.

1Any function g(n) of the form nα logβ n satisfies that condition.



Examples:

• If T (n) = 2T (n/4) + 3T (n/6) + Θ(n log n), then p = 1 and T (n) =
Θ(n log2 n).

• If T (n) = 2T (n/2) + 8
9T (3n/4) + Θ(n2/ log n), then p = 2 and T (n) =

Θ(n2/ log log n).

• If T (n) = T (n/2) + Θ(log n), then p = 0 and T (n) = Θ(log2 n).

• If T (n) = 1
2T (n/2) + Θ(1/n), then p = −1 and T (n) = Θ((log n)/n).

• If T (n) = 4T (n/2) + Θ(n), then p = 2 and T (n) = Θ(n2).

4 Back to Section 1

Our recurrence is:
T (n) = 3T (n/2) + Θ(n)

Applying the Bazzi method (just for a change from the classical Master
method), we get 3 · 2−p = 1 ⇒ p = log2 3.

∫ n

1

u

ulog2 3+1
du =

∫ n

1

u− log2 3du =
u1−log2 3

1− log2 3

∣∣∣
n

1
= Θ(n1−log2 3)

T (n) = Θ(nlog2 3(1 + n1−log2 3)) = Θ(nlog2 3 + n) = Θ(nlog2 3) = Θ(n1.59)

5 Strassen’s divide-and-conquer algorithm

Consider the multiplication of two n× n matrices. If c = ab, then

cij =
n∑

k=1

aikbkj

Therefore, the running the basic algorithm for matrix multiplication is Θ(n3)
(each of the n2 entries in c requires n multiplications and n − 1 additions).
Strassen observed that if we divide the matrices into four blocks, we have the
following (here a, b, c, d, e, f , g, and h are all n

2 × n
2 matrices):

[
a b
c d

] [
e f
g h

]
=

[
ae + bg af + bh
ce + dg df + dh

]

Therefore, in the most straight forward way, we require eight multiplications
of n

2 × n
2 matrices. Once we have those results, we need Θ(n2) time to combine

them by adding n
2 × n

2 matrices. If we apply this idea recursively we get:

T (n) = 8T (n/2) + Θ(n2)



which leads to T (n) = Θ(n3). Strassen’s idea is to perform seven multiplications
only, and combine them in Θ(n2) time as follows:

[
a b
c d

] [
e f
g h

]
=

[
p5 + p4 − p2 + p6 p1 + p2

p3 + p4 p1 + p5 − p3 − p7

]

where

• p1 = a(f − h)

• p2 = (a + b)h

• p3 = (c + d)e

• p4 = d(g − e)

• p5 = (a + b)(e + h)

• p6 = (b− d)(g + h)

• p7 = (a− c)(e + f)

Strassen’s algorithm leads to the following recurrence:

T (n) = 7T (n/2) + Θ(n2)

which has T (n) = Θ(nlog2 7) = Θ(n2.81) as a solution (using results of Section 2
and/or Section 3).

6 Fast Fourrier transform

Consider the problem of multiplying two polynomials a(x) = a0 + a1x + a2x
2 +

. . .+arx
r and b(x) = b0 + b1x+ b2x

2 + . . .+ bsx
s (assume ar 6= 0 and bs 6= 0). If

c(x) = a(x)b(x), then c(x) has degree r + s. We can expand the two polynomial
to have n terms by adding zero coefficients. Therefore, let n − 1 ≥ r + s and
write:

a(x) = a0 + a1x + a2x
2 + . . . + an−1x

n−1

b(x) = a0 + b1x + b2x
2 + . . . + bn−1x

n−1

c(x) = c0 + c1x + c2x
2 + . . . + cn−1x

n−1

where cj =
∑j

k=0 akbj−k for 0 ≤ j ≤ n− 1.
Therefore, the most straight forward way for computing all cj ’s requires

Θ(n2) time. We will explore a way to compute all cj ’s in Θ(n log n) using the
Discrete Fourrier transform (DFT), more specifically, an implementation of the
it known as Fast Fourrier Transform (FFT).

Given a polynomial a(x) of degree n−1, let a(x0), . . . , a(xn−1) be the values
of a(x) on n distinct points x0, . . . , xn−1. One can show that a(x0), . . . , a(xn−1)
uniquely determine the polynomial a(x).






1 x0 x2
0 . . . xn−1

0

1 x1 x2
1 . . . xn−1

1
...

...
...

. . .
...

1 xn−1 x2
n−1 . . . xn−1

n−1







a0

a1

...
an−1


 =




a(x0)
a(x1)

...
a(xn−1)




When x0, . . . , xn−1 are distinct, the matrix on the left is known as the Van-
dermonde matrix and is always invertible (the determinant is different than 0).
Therefore, a0, . . . , an−1 are uniquely determined.

Given a(x0), . . . , a(xn−1), and similarly, b(x0), . . . , b(xn−1), we can deter-
mine c(x0), . . . , c(xn−1) in Θ(n) time by simply multiplying the corresponding
terms, i.e. c(xj) = a(xj)b(xj).

Multiply a(x) and b(x)

1. obtain a(x0), . . . , a(xn−1) from a0, . . . , an−1

2. obtain b(x0), . . . , b(xn−1) from b0, . . . , bn−1

3. compute c(xj) = a(xj)b(xj) for 0 ≤ j ≤ n− 1 in Θ(n) time

4. obtain c0, . . . , cn−1 from c(x0), . . . , c(xn−1)

We will show that each of steps (1), (2), and (4) can be done in Θ(n log n)
time. The idea is to consider a special set of n values for x0, . . . xn−1; they will
consist of the n complex nth roots of 1 (so they will be complex numbers).

Let n be a power of 2. Consider the complex number w = ei2π/n =
cos 2π/n + i sin 2π/n. The powers of w are:

1, w, w2, . . . wn−1

where wk = ei2πk/n = cos 2πk/n + i sin 2πk/n. Note that (wk)n = 1 and that’s
why we call them the n complex nth roots of 1, with w being the principal nth

root of 1.




1 1 1 . . . 1
1 w w2 . . . wn−1

...
...

...
. . .

...
1 wn−1 w2(n−1) . . . w(n−1)(n−1)







a0

a1

...
an−1


 =




a(1)
a(w)

...
a(wn−1)




We call (a(1), . . . , a(wn−1)) the Discrete Fourrier Transform of (a0, . . . , an−1)
where:

a(wj) =
n−1∑

i=0

wijai



If we let a(x) = a0(x) + xa1(x) where

a0(x) = a0 + a2x + a4x
2 + . . . an−1x

n/2−1

a1(x) = a1 + a3x + a5x
2 + . . . an−2x

n/2−1

then a(wk) = a0(w2k)+wka1(w2k). This means to evaluate a(x) at 1, w . . . , wn−1,
we need to evaluate a0(x) and a1(x) at 12, w2, . . . , (wn−1)2. But the squares of
the nth roots of 1 are exactly the n/2nd roots of 1. In fact

(wk+n/2)2 = (wk)2 · wn = (wk)2 · 1 = (wk)2 = e
i2πk
n/2

Therefore, to evaluate a(x) on n points, we need to evaluate a0(x) and a1(x)
on n/2 points. If we apply this recursively, it leads to the following recurrence
for time:

T (n) = 2T (n/2) + Θ(n)

This means that obtaining a(1), a(w), . . . , a(wn−1) requires Θ(n log n) time.
That’s the Fast Fourrier Transform (FFT). Once we obtain c(1), c(w), . . . , c(wn−1)
we need to compute c0, . . . cn−1.




1 1 1 . . . 1
1 w w2 . . . wn−1

...
...

...
. . .

...
1 wn−1 w2(n−1) . . . w(n−1)(n−1)







c0

c1

...
cn−1


 =




c(1)
c(w)

...
c(wn−1)




If we denote the matrix on the left by V , where Vij = wij (assuming indexing
starts at 0), it is not hard to see that V −1 is such that V −1

ij = 1
nw−ij .

[V V −1]ij =
n−1∑

k=0

VikV −1
kj =

1
n

n−1∑

k=0

(wi−j)k

If i − j is a multiple of n (this happens only when i − j = 0, i.e. i = j), and
hence wi−j is 1, the above sum is 1. Otherwise, the sum is a geometric sum
equal to

(wi−j)n − 1
wi−j − 1

=
(wn)i−j − 1
wi−j − 1

=
1− 1

wi−j − 1
= 0

Therefore,

n




c0

c1

...
cn−1


 =




1 1 1 . . . 1
1 w−1 w−2 . . . w−(n−1)

...
...

...
. . .

...
1 w−(n−1) w−2(n−1) . . . w−(n−1)(n−1)







c(1)
c(w)

...
c(wn−1)




The right side looks like a Discrete Fourrier transform with w replaced by w−1.



Therefore, c0, . . . , cn−1 can be also obtained in Θ(n log n) time. The inverse
DFT is given by:

cj =
1
n

n−1∑

i=0

w−ijc(wi)

7 Schönhage-Strassen algorithm

We revisit the problem of multiplying two n bit numbers u and v. Divide u and
v into K blocks of l bits each. We take K to be a power of 2 as follows:

K = 2k, L = 2l, 2n ≤ 2kl < 4n

Therefore, u and v can be viewed as K digit numbers in base L

u = uK−1L
K−1 + . . . + u1L + u0, v = vK−1L

K−1 + . . . + v1L + v0

Note that since 2k−1l ≥ n, uj = vj = 0 for j ≥ K/2. We would like to compute
w = uv, and by applying FFT, we can find (wK−2, . . . , w0).

w = wK−2L
K−2 + . . . + w1L + w0

Assuming we are using m bits for carrying out the arithmetic operations
for FFT and inverse FFT, the running of this procedure is O(K log KM) =
O(Mnk/l) where M is the time required for m-bit multiplications. Note that
wr < (r + 1)L2 < KL2; therefore, each wr has at most k + 2l bits and hence
reconstructing the binary representation of w requires O(K(k+l)) = O(n+nk/l)
time. The total running time of this algorithm is O(n) + O(Mnk/l).

Schönhage and Strassen showed that if k ≥ 7, m ≥ 4k+2l, and w0, . . . wK−1

are computed in a specific way, then all m-bit multiplications of complex num-
bers will not propagate much error and will round to the correct integers wr.
We omit the messy details. Therefore, we have

2n ≤ 2kl < 4n

k ≥ 7

m ≥ 4k + 2l

A practical example: if n = 213, we can choose k = 11, l = 8, and m = 60.
Therefore, with today’s double precision arithmetic, we can multiply 8192 bit
numbers in practically O(n) time (thinking of M as a constant because we are
using the hardware of the machine).

Theoretically, we can choose k = l and m = 6k; this choice of k is always
less than log n:

2kk < 4n

2k−2k < n



k − 2 + log k < log n

Since k ≥ 7, log k > 2 and k < log n.
Therefore, If we apply the algorithm recursively for the m-bit multiplications,

we get T (n) = O(nT (log n)). Therefore,

T (n) ≤ cn(c log n)(c log log n)(c log log log n) . . .

With a variant of this algorithm, and more careful analysis, Schönhage and
Strassen achieved an O(n log n log log n) time algorithm, which remained the
best until 2007.


