Making faster multiplications

Saad Mneimneh

1 A simple divide-and-conquer inspired by Gauss

Consider the multiplication of two complex numbers:

$$(a+bi)(c+di) = ac + (bc+ad)i - bd$$

which involves four multiplications: ac, bc, ad, and bd. Gauss observed that those quantities can be obtained by performing three multiplications only: ac, bd, and (a+b)(c+d), then the term (bc+ad) can be obtained as (a+b)(c+d) - ac - bd. Since multiplication of n bit numbers required $\Theta(n^2)$ bit operations, compared to $\Theta(n)$ for addition and subtraction, it may be worth reducing the number of multiplications. Consider two n bit numbers u and v, and let us write

$$u = a \cdot 2^{n/2} + b$$
$$v = c \cdot 2^{n/2} + d$$

where a, b, c, and d are n/2 bit numbers. For simplicity, we may assume that n is a power of 2, but we can use floors and ceilings to adjust for an n that is not a power of 2.

$$uv = (a \cdot 2^{n/2} + b)(c \cdot 2^{n/2} + d) = ac \cdot 2^n + (bc + ad)2^{n/2} + bd$$

Using Gauss' idea, we can perform three multiplications to obtain all terms. Note that multiplication by a power of 2 is really just a shift operation; therefore, if we apply this idea recursively, we obtain a recurrence for the time:

$$T(n) = 3T(n/2) + \Theta(n)$$

2 The Master theorem

Consider the following recurrence:

$$T(n) = \begin{cases} \Theta(1) & 1 \le n \le n_0 \\ aT(n/b) + \Theta(g(n)) & n > n_0 \end{cases}$$

where:

- $a \ge 1$
- *b* > 1
- g is asymptotically positive

Then,

- $g(n)/n^{\log_b a} = O(n^{-\epsilon})$ for some $\epsilon > 0 \Rightarrow T(n) = \Theta(n^{\log_b a})$
- $g(n)/n^{\log_b a} = \Theta(\log^k n)$ for some $k \ge 0 \Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$
- $g(n)/n^{\log_b a} = \Omega(n^{\epsilon})$ for some $\epsilon > 0$ and $ag(n/b) \le cg(n)$ for some c < 1and $n > n_0 \Rightarrow T(n) = \Theta(g(n))$

We usually interpret n/b as either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. The proof of the Master theorem can be found in the book Introduction to Algorithms by CLRS.

3 A better Master theorem, the Bazzi method

Consider the following recurrence:

$$T(n) = \begin{cases} \Theta(1) & 1 \le n \le n_0 \\ \sum_{i=1}^k a_i T(n/b_i) + \Theta(g(n)) & n > n_0 \end{cases}$$

where:

- $n_0 > b_i$ and $n_0 \ge b_i/(b_i 1)$ for $1 \le i \le k$
- $a_i > 0$ for $1 \le i \le k$
- $b_i > 1$ for $1 \le i \le k$
- $k \ge 1$
- g(n) is non-negative and satisfies:

$$u \in [n/b_i, n] \Rightarrow c_1 g(n) \le g(u) \le c_2 g(n)$$

for $1 \leq i \leq k$ where c_1 and c_2 are positive constants¹

Then,

$$T(n) = \Theta\left(x^p\left(1 + \int_1^n \frac{g(u)}{u^{p+1}}du\right)\right)$$

where p is the unique solution of $\sum_{i=1}^{k} a_i b_i^{-p} = 1$.

Again, we usually interpret n/b_i as either $\lfloor n/b_i \rfloor$ or $\lceil n/b_i \rceil$. The proof of this theorem can be found at http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf.

¹Any function g(n) of the form $n^{\alpha} \log^{\beta} n$ satisfies that condition.

Examples:

- If $T(n) = 2T(n/4) + 3T(n/6) + \Theta(n \log n)$, then p = 1 and $T(n) = \Theta(n \log^2 n)$.
- If $T(n) = 2T(n/2) + \frac{8}{9}T(3n/4) + \Theta(n^2/\log n)$, then p = 2 and $T(n) = \Theta(n^2/\log\log n)$.
- If $T(n) = T(n/2) + \Theta(\log n)$, then p = 0 and $T(n) = \Theta(\log^2 n)$.
- If $T(n) = \frac{1}{2}T(n/2) + \Theta(1/n)$, then p = -1 and $T(n) = \Theta((\log n)/n)$.
- If $T(n) = 4T(n/2) + \Theta(n)$, then p = 2 and $T(n) = \Theta(n^2)$.

4 Back to Section 1

Our recurrence is:

$$T(n) = 3T(n/2) + \Theta(n)$$

Applying the Bazzi method (just for a change from the classical Master method), we get $3 \cdot 2^{-p} = 1 \Rightarrow p = \log_2 3$.

$$\int_{1}^{n} \frac{u}{u^{\log_2 3+1}} du = \int_{1}^{n} u^{-\log_2 3} du = \frac{u^{1-\log_2 3}}{1-\log_2 3} \Big|_{1}^{n} = \Theta(n^{1-\log_2 3})$$
$$T(n) = \Theta(n^{\log_2 3}(1+n^{1-\log_2 3})) = \Theta(n^{\log_2 3}+n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.59})$$

5 Strassen's divide-and-conquer algorithm

Consider the multiplication of two $n \times n$ matrices. If c = ab, then

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Therefore, the running the basic algorithm for matrix multiplication is $\Theta(n^3)$ (each of the n^2 entries in c requires n multiplications and n-1 additions). Strassen observed that if we divide the matrices into four blocks, we have the following (here a, b, c, d, e, f, g, and h are all $\frac{n}{2} \times \frac{n}{2}$ matrices):

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\left[\begin{array}{cc}e&f\\g&h\end{array}\right]=\left[\begin{array}{cc}ae+bg⁡+bh\\ce+dg&df+dh\end{array}\right]$$

Therefore, in the most straight forward way, we require eight multiplications of $\frac{n}{2} \times \frac{n}{2}$ matrices. Once we have those results, we need $\Theta(n^2)$ time to combine them by adding $\frac{n}{2} \times \frac{n}{2}$ matrices. If we apply this idea recursively we get:

$$T(n) = 8T(n/2) + \Theta(n^2)$$

which leads to $T(n) = \Theta(n^3)$. Strassen's idea is to perform seven multiplications only, and combine them in $\Theta(n^2)$ time as follows:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} p_5 + p_4 - p_2 + p_6 & p_1 + p_2 \\ p_3 + p_4 & p_1 + p_5 - p_3 - p_7 \end{bmatrix}$$

where

- $p_1 = a(f-h)$
- $p_2 = (a+b)h$
- $p_3 = (c+d)e$
- $p_4 = d(g e)$
- $p_5 = (a+b)(e+h)$
- $p_6 = (b-d)(g+h)$
- $p_7 = (a c)(e + f)$

Strassen's algorithm leads to the following recurrence:

$$T(n) = 7T(n/2) + \Theta(n^2)$$

which has $T(n) = \Theta(n^{\log_2 7}) = \Theta(n^{2.81})$ as a solution (using results of Section 2 and/or Section 3).

6 Fast Fourrier transform

Consider the problem of multiplying two polynomials $a(x) = a_0 + a_1x + a_2x^2 + \ldots + a_rx^r$ and $b(x) = b_0 + b_1x + b_2x^2 + \ldots + b_sx^s$ (assume $a_r \neq 0$ and $b_s \neq 0$). If c(x) = a(x)b(x), then c(x) has degree r + s. We can expand the two polynomial to have n terms by adding zero coefficients. Therefore, let $n - 1 \ge r + s$ and write:

$$a(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$

$$b(x) = a_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$

$$c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$$

where $c_j = \sum_{k=0}^{j} a_k b_{j-k}$ for $0 \le j \le n-1$.

Therefore, the most straight forward way for computing all c_j 's requires $\Theta(n^2)$ time. We will explore a way to compute all c_j 's in $\Theta(n \log n)$ using the Discrete Fourrier transform (DFT), more specifically, an implementation of the it known as Fast Fourrier Transform (FFT).

Given a polynomial a(x) of degree n-1, let $a(x_0), \ldots, a(x_{n-1})$ be the values of a(x) on n distinct points x_0, \ldots, x_{n-1} . One can show that $a(x_0), \ldots, a(x_{n-1})$ uniquely determine the polynomial a(x).

$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	$egin{array}{c} x_0 \ x_1 \end{array}$	$x_0^2 \ x_1^2$	 	$\begin{bmatrix} x_0^{n-1} \\ x_1^{n-1} \end{bmatrix}$	$\left[\begin{array}{c}a_0\\a_1\end{array}\right]$		$\left[\begin{array}{c}a(x_0)\\a(x_1)\end{array}\right]$	
: 1	\vdots x_{n-1}	$\vdots \\ x_{n-1}^2$	۰۰. ۰۰۰	$\begin{bmatrix} \vdots \\ x_{n-1}^{n-1} \end{bmatrix}$	$\begin{bmatrix} \vdots \\ a_{n-1} \end{bmatrix}$	=	$\begin{bmatrix} \vdots \\ a(x_{n-1}) \end{bmatrix}$	

When x_0, \ldots, x_{n-1} are distinct, the matrix on the left is known as the Vandermonde matrix and is always invertible (the determinant is different than 0). Therefore, a_0, \ldots, a_{n-1} are uniquely determined.

Given $a(x_0), \ldots, a(x_{n-1})$, and similarly, $b(x_0), \ldots, b(x_{n-1})$, we can determine $c(x_0), \ldots, c(x_{n-1})$ in $\Theta(n)$ time by simply multiplying the corresponding terms, i.e. $c(x_j) = a(x_j)b(x_j)$.

Multiply a(x) and b(x)

- 1. obtain $a(x_0), \ldots, a(x_{n-1})$ from a_0, \ldots, a_{n-1}
- 2. obtain $b(x_0), \ldots, b(x_{n-1})$ from b_0, \ldots, b_{n-1}
- 3. compute $c(x_j) = a(x_j)b(x_j)$ for $0 \le j \le n-1$ in $\Theta(n)$ time
- 4. obtain c_0, \ldots, c_{n-1} from $c(x_0), \ldots, c(x_{n-1})$

We will show that each of steps (1), (2), and (4) can be done in $\Theta(n \log n)$ time. The idea is to consider a special set of n values for x_0, \ldots, x_{n-1} ; they will consist of the n complex n^{th} roots of 1 (so they will be complex numbers).

Let *n* be a power of 2. Consider the complex number $w = e^{i2\pi/n} = \cos 2\pi/n + i \sin 2\pi/n$. The powers of *w* are:

$$1, w, w^2, \dots w^{n-1}$$

where $w^k = e^{i2\pi k/n} = \cos 2\pi k/n + i \sin 2\pi k/n$. Note that $(w^k)^n = 1$ and that's why we call them the *n* complex n^{th} roots of 1, with *w* being the principal n^{th} root of 1.

[1]	1	1		1	a_0		$\begin{bmatrix} a(1) \end{bmatrix}$
1	w	w^2		w^{n-1}	$a_0 \\ a_1$		$\begin{bmatrix} a(1) \\ a(w) \end{bmatrix}$
	•	•	•.	$\vdots \\ w^{(n-1)(n-1)}$:	=	:
:	:	:	••	:	:		:
L 1	w^{n-1}	$w^{2(n-1)}$	•••	$w^{(n-1)(n-1)}$	a_{n-1}		$\left[a(w^{n-1}) \right]$

We call $(a(1), \ldots, a(w^{n-1}))$ the Discrete Fourrier Transform of (a_0, \ldots, a_{n-1}) where:

$$a(w^j) = \sum_{i=0}^{n-1} w^{ij} a_i$$

If we let $a(x) = a_0(x) + xa_1(x)$ where

$$a_0(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{n-1} x^{n/2-1}$$
$$a_1(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{n-2} x^{n/2-1}$$

then $a(w^k) = a_0(w^{2k}) + w^k a_1(w^{2k})$. This means to evaluate a(x) at $1, w \dots, w^{n-1}$, we need to evaluate $a_0(x)$ and $a_1(x)$ at $1^2, w^2, \dots, (w^{n-1})^2$. But the squares of the n^{th} roots of 1 are exactly the $n/2^{nd}$ roots of 1. In fact

$$(w^{k+n/2})^2 = (w^k)^2 \cdot w^n = (w^k)^2 \cdot 1 = (w^k)^2 = e^{\frac{i2\pi k}{n/2}}$$

Therefore, to evaluate a(x) on n points, we need to evaluate $a_0(x)$ and $a_1(x)$ on n/2 points. If we apply this recursively, it leads to the following recurrence for time:

$$T(n) = 2T(n/2) + \Theta(n)$$

This means that obtaining $a(1), a(w), \ldots, a(w^{n-1})$ requires $\Theta(n \log n)$ time. That's the Fast Fourrier Transform (FFT). Once we obtain $c(1), c(w), \ldots, c(w^{n-1})$ we need to compute c_0, \ldots, c_{n-1} .

$$\begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & w & w^2 & \dots & w^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & w^{n-1} & w^{2(n-1)} & \dots & w^{(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{bmatrix} = \begin{bmatrix} c(1) \\ c(w) \\ \vdots \\ c(w^{n-1}) \end{bmatrix}$$

If we denote the matrix on the left by V, where $V_{ij} = w^{ij}$ (assuming indexing starts at 0), it is not hard to see that V^{-1} is such that $V_{ij}^{-1} = \frac{1}{n}w^{-ij}$.

$$[VV^{-1}]_{ij} = \sum_{k=0}^{n-1} V_{ik} V_{kj}^{-1} = \frac{1}{n} \sum_{k=0}^{n-1} (w^{i-j})^k$$

If i - j is a multiple of n (this happens only when i - j = 0, i.e. i = j), and hence w^{i-j} is 1, the above sum is 1. Otherwise, the sum is a geometric sum equal to

$$\frac{(w^{i-j})^n - 1}{w^{i-j} - 1} = \frac{(w^n)^{i-j} - 1}{w^{i-j} - 1} = \frac{1 - 1}{w^{i-j} - 1} = 0$$

Therefore,

$$n \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & w^{-1} & w^{-2} & \dots & w^{-(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & w^{-(n-1)} & w^{-2(n-1)} & \dots & w^{-(n-1)(n-1)} \end{bmatrix} \begin{bmatrix} c(1) \\ c(w) \\ \vdots \\ c(w^{n-1}) \end{bmatrix}$$

The right side looks like a Discrete Fourrier transform with w replaced by w^{-1} .

Therefore, c_0, \ldots, c_{n-1} can be also obtained in $\Theta(n \log n)$ time. The inverse DFT is given by:

$$c_j = \frac{1}{n} \sum_{i=0}^{n-1} w^{-ij} c(w^i)$$

7 Schönhage-Strassen algorithm

We revisit the problem of multiplying two n bit numbers u and v. Divide u and v into K blocks of l bits each. We take K to be a power of 2 as follows:

$$K = 2^k, \quad L = 2^l, \quad 2n \le 2^k l < 4n$$

Therefore, u and v can be viewed as K digit numbers in base L

$$u = u_{K-1}L^{K-1} + \ldots + u_1L + u_0, \quad v = v_{K-1}L^{K-1} + \ldots + v_1L + v_0$$

Note that since $2^{k-1}l \ge n$, $u_j = v_j = 0$ for $j \ge K/2$. We would like to compute w = uv, and by applying FFT, we can find (w_{K-2}, \ldots, w_0) .

$$w = w_{K-2}L^{K-2} + \ldots + w_1L + w_0$$

Assuming we are using *m* bits for carrying out the arithmetic operations for FFT and inverse FFT, the running of this procedure is $O(K \log KM) = O(Mnk/l)$ where *M* is the time required for *m*-bit multiplications. Note that $w_r < (r+1)L^2 < KL^2$; therefore, each w_r has at most k + 2l bits and hence reconstructing the binary representation of *w* requires O(K(k+l)) = O(n+nk/l)time. The total running time of this algorithm is O(n) + O(Mnk/l).

Schönhage and Strassen showed that if $k \ge 7$, $m \ge 4k + 2l$, and $w^0, \ldots w^{K-1}$ are computed in a specific way, then all *m*-bit multiplications of complex numbers will not propagate much error and will round to the correct integers w_r . We omit the messy details. Therefore, we have

$$2n \le 2^k l < 4n$$
$$k \ge 7$$
$$m \ge 4k + 2l$$

A practical example: if $n = 2^{13}$, we can choose k = 11, l = 8, and m = 60. Therefore, with today's double precision arithmetic, we can multiply 8192 bit numbers in practically O(n) time (thinking of M as a constant because we are using the hardware of the machine).

Theoretically, we can choose k = l and m = 6k; this choice of k is always less than log n:

$$2^{k}k < 4n$$
$$2^{k-2}k < n$$

$k - 2 + \log k < \log n$

Since $k \ge 7$, $\log k > 2$ and $k < \log n$.

Therefore, If we apply the algorithm recursively for the *m*-bit multiplications, we get $T(n) = O(nT(\log n))$. Therefore,

 $T(n) \le cn(c\log n)(c\log\log n)(c\log\log\log n)\dots$

With a variant of this algorithm, and more careful analysis, Schönhage and Strassen achieved an $O(n \log n \log \log n)$ time algorithm, which remained the best until 2007.