Making faster multiplications

Saad Mneimneh

1 A simple divide-and-conquer inspired by Gauss
Consider the multiplication of two complex numbers:
(a+bi)(c+di) = ac+ (be + ad)i — bd

which involves four multiplications: ac, bc, ad, and bd. Gauss observed that
those quantities can be obtained by performing three multiplications only: ac,
bd, and (a+0b)(c+d), then the term (bc+ad) can be obtained as (a+b)(c+d) —
ac — bd. Since multiplication of n bit numbers required ©(n?) bit operations,
compared to ©(n) for addition and subtraction, it may be worth reducing the
number of multiplications. Consider two n bit numbers u and v, and let us

write
u=a-2"%+b

v=c-2V%24d

where a, b, ¢, and d are n/2 bit numbers. For simplicity, we may assume that
n is a power of 2, but we can use floors and ceilings to adjust for an n that is
not a power of 2.

w = (a-2V% 4+ b)(c- 22 +d) = ac- 2" + (bc + ad)2™/? + bd

Using Gauss’ idea, we can perform three multiplications to obtain all terms.
Note that multiplication by a power of 2 is really just a shift operation; therefore,
if we apply this idea recursively, we obtain a recurrence for the time:

T(n) =3T(n/2) + ©(n)

2 The Master theorem

Consider the following recurrence:

[e 1<n<n
T(n) = { oT(n/b) + O(g(n) n>ng

where:

ea>1

eb>1

e ¢ is asymptotically positive

Then,

e g(n)/n'°2* = O(n=°) for some € > 0 = T(n) = O(n'°s>2)

e g(n)/n'°8 @ = O(log* n) for some k >0 = T(n) = O(n'2 *1og"*! n)

e g(n)/n'°er® = Q(n€) for some € > 0 and ag(n/b) < cg(n) for some ¢ < 1
and n > ng = T'(n) = O(g(n))

We usually interpret n/b as either |n/b| or [n/b]. The proof of the Master
theorem can be found in the book Introduction to Algorithms by CLRS.

3 A better Master theorem, the Bazzi method

Consider the following recurrence:

Tlm) = { S5 aT(n/bi) +O(g(n)) n>ng

where:
e ng>b;andng >b;/(b; — 1) for 1 <i <k
e q;>0for1<i<k
e b, >1forl1<i<k
e k>1
e g(n) is non-negative and satisfies:
u € [n/bj,n] = c1g(n) < g(u) < cag(n)

for 1 <4 < k where ¢; and ¢y are positive constants?

Then, .
7 =0 (e (1+ [£ au))

where p is the unique solution of Zle ab;’ =1.

Again, we usually interpret n/b; as either |n/b; | or [n/b;]. The proof of this
theorem can be found at http://courses.csail.mit.edu/6.046 /spring04 /handouts/akrabazzi.pdf.

L Any function g(n) of the form n® log? n satisfies that condition.

Examples:

o If T(n) = 2T(n/4) + 3T (n/6) + O(nlogn), then p = 1 and T'(n) =
O(nlog?n).

If T(n) = 2T(n/2) + 3T(3n/4) + ©(n?/logn), then p = 2 and T(n) =
©(n?/loglogn).

If T(n) = T(n/2) + ©(logn), then p = 0 and T'(n) = O(log? n).

If T(n) = 3T(n/2) + ©(1/n), then p = —1 and T'(n) = ©((log n)/n).
e If T(n) =4T(n/2) + O(n), then p = 2 and T'(n) = O(n?).

4 Back to Section 1

Our recurrence is:

T(n) =3T(n/2)+ O(n)

Applying the Bazzi method (just for a change from the classical Master
method), we get 3-27P =1 = p = log, 3.

n n 1-log, 3

u _ u 2 n _

——du = w823y = — | = Q(nlle23)
1 ulogz3+1 1 1—1logy 31

T(n) _ 6(n10g2 3(1 + nlflogz, 3)) _ @(nlog23 + 77,) _ @(nlog2 3) _ @(’17,1'59)

5 Strassen’s divide-and-conquer algorithm

Consider the multiplication of two n x n matrices. If ¢ = ab, then

n
cij =Y airbi
k=1

Therefore, the running the basic algorithm for matrix multiplication is ©(n?)
(each of the n? entries in ¢ requires n multiplications and n — 1 additions).
Strassen observed that if we divide the matrices into four blocks, we have the

n

following (here a, b, ¢, d, e, f, g, and h are all § x § matrices):

a b e f| _| ae+bg af+bh
c d g h| | ce+dg df +dh

Therefore, in the most straight forward way, we require eight multiplications
of Z x 2 matrices. Once we have those results, we need ©(n?) time to combine
them by adding § x § matrices. If we apply this idea recursively we get:

T(n) = 8T(n/2) + O(n?)

which leads to T'(n) = ©(n?). Strassen’s idea is to perform seven multiplications
only, and combine them in ©(n?) time as follows:

[a b}{e f]:[p5+p4—p2+p6 D1+ D2
c d g h D3+ Ppa D1+ Pps —p3—pr
where

e p1=a(f—h)

* p2=(a+bh

* p3 = (c+de

* py=d(g—e)

o ps=(a+b)e+h)

Strassen’s algorithm leads to the following recurrence:
T(n) = 7T(n/2) + O(n?)

which has T'(n) = ©(n'°827) = ©(n28!) as a solution (using results of Section 2
and/or Section 3).

6 Fast Fourrier transform

Consider the problem of multiplying two polynomials a(z) = ag + a12 + asz? +
... +a.2" and b(z) = by + b1z +bax? 4. .. +bsx® (assume a, # 0 and b, # 0). If
c(x) = a(x)b(zx), then ¢(z) has degree r +s. We can expand the two polynomial
to have n terms by adding zero coefficients. Therefore, let n — 1 > r 4+ s and
write:

a(r) = ap + a1z + ax® + ...+ ap_ 12"t

b(z) = ap + byw + box? + ...+ by_qz" !

c(x) =co+ 1z + 2+ . epqa” Tt
where ¢; = Y7 _jagbj_j for 0 < j <n-—1.

Therefore, the most straight forward way for computing all ¢;’s requires
O(n?) time. We will explore a way to compute all ¢;’s in ©(nlogn) using the
Discrete Fourrier transform (DFT), more specifically, an implementation of the
it known as Fast Fourrier Transform (FFT).

Given a polynomial a(x) of degree n—1, let a(xg), ..., a(xn—1) be the values
of a(x) on n distinct points zg, ..., Z,—1. One can show that a(zg),...,a(zrn_1)
uniquely determine the polynomial a(x).

1z U ag a(zop)
1 = 3 . ap! a; a(xy)
I) "1 an-1 a(Tn_1)

When xg, ..., x,_1 are distinct, the matrix on the left is known as the Van-
dermonde matrix and is always invertible (the determinant is different than 0).
Therefore, aq, ..., a,_1 are uniquely determined.

Given a(zo),...,a(zp—1), and similarly, b(zo),...,b(xn_1), we can deter-
mine ¢(zg),...,c(x,—1) in O(n) time by simply multiplying the corresponding
terms, i.e. c(x;) = a(z;)b(x;).

Multiply a(x) and b(z)

1. obtain a(zg),...,a(xp—1) from ag,...,an_1

2. obtain b(x¢),...,b(xn—1) from bg,...,b,_1
3. compute c(z;) = a(z;)b(z;) for 0 < j <n—1in O(n) time
4

. obtain cg,...,cp—1 from c(zg),...,c(Tp-1)

We will show that each of steps (1), (2), and (4) can be done in ©(nlogn)
time. The idea is to consider a special set of n values for g, ... x,_1; they will
consist of the n complex n'" roots of 1 (so they will be complex numbers).

Let n be a power of 2. Consider the complex number w = e27/" =
cos 27 /n + isin 2w /n. The powers of w are:

1w, w?,.. . w" !
where w¥ = 2™%/" = cos 2k /n + isin 27k /n. Note that (w®)” = 1 and that’s
why we call them the n complex n** roots of 1, with w being the principal nt?
root of 1.

11 1. 1 ao a(1)
1 2 wn—l ay a(w)
i ,wn.—l w2(ﬁ—1) o w(n—l.)(n—l) an;l a(wh_l)
We call (a(1),...,a(w™ 1)) the Discrete Fourrier Transform of (aq, . .., a,_1)
where: .

a(w?) = Z wa;

=0

If we let a(x) = ap(z) + zay(z) where

2 21
ap(x) = ap + agx + agz” + ... ap_12™

2 2-1
a1(z) = a1 + azz +asz” + ... oz

then a(w”) = ag(w?*)+wka; (w?*). This means to evaluate a(z) at 1,w...,w""?
we need to evaluate ag(z) and a;(z) at 12,w?, ..., (w™ 1)2. But the squares of
the n'" roots of 1 are exactly the n/2"? roots of 1. In fact

)

(wk+n/2)2 _ (wk)2 LW = (wk)2 1= (wk)z _ 6137;

Therefore, to evaluate a(x) on n points, we need to evaluate ag(z) and a;(x)
on n/2 points. If we apply this recursively, it leads to the following recurrence
for time:

T(n) =2T(n/2) + O(n)

This means that obtaining a(1),a(w),...,a(w™ 1) requires O(nlogn) time.
That’s the Fast Fourrier Transform (FFT). Once we obtain c¢(1), c(w), ..., c(w™ 1)
we need to compute cg,...Cp_1.

1 1 1 1 o c(1)
1 2 wnt 1 c(w)
i wn.*l w2(’.“1) w("*l')("*l) cn;l c(w’."l)

If we denote the matrix on the left by V', where V;; = w" (assuming indexing
starts at 0), it is not hard to see that V! is such that V”_1 = %w*”.

n—1 n—1
B 1 o
VV Ty = VaVit = - > (w')
k=0 k=0

If i — j is a multiple of n (this happens only when i — j = 0, i.e. ¢ = j), and
hence w®™7 is 1, the above sum is 1. Otherwise, the sum is a geometric sum
equal to

(w=H)r -1 (w™) I -1 1-1

wi—i—1 — wivi—1 :wi—j—1:0
Therefore,
Co 1 1 1 . 1 e(1)
1 1 w™? w2 e w~ (=1 c(w)
n =
Cn;l 1 w—(;b—l) w—2£n—1) o w—(n—.l)(n—l) c(w’;L—l)

The right side looks like a Discrete Fourrier transform with w replaced by w™?.

Therefore, cp,...,c,—1 can be also obtained in ©(nlogn) time. The inverse
DFT is given by:

¢ = 1 Swiijc(wi)
‘oo =0

7 Schonhage-Strassen algorithm

We revisit the problem of multiplying two n bit numbers v and v. Divide u and
v into K blocks of [bits each. We take K to be a power of 2 as follows:

K=2¢ L=2. 2n<2¥<4n

Therefore, u and v can be viewed as K digit numbers in base L

u = uK_lLKfl +...+u L+uy, v= UK_lLK71 + ...+ L+

Note that since 281 > n, u; =v; =0 for j > K /2. We would like to compute
w = uv, and by applying FFT, we can find (wg_s,...,wp).

w = wK_gLK72 + ...+ wi L+ wy

Assuming we are using m bits for carrying out the arithmetic operations
for FFT and inverse FFT, the running of this procedure is O(K log KM) =
O(Mnk/l) where M is the time required for m-bit multiplications. Note that
w, < (r+ 1)L% < KL?; therefore, each w, has at most k + 2 bits and hence
reconstructing the binary representation of w requires O(K (k+1)) = O(n+nk/l)
time. The total running time of this algorithm is O(n) + O(Mnk/I).

Schénhage and Strassen showed that if k > 7, m > 4k+2[, and w°, ... w&~!
are computed in a specific way, then all m-bit multiplications of complex num-
bers will not propagate much error and will round to the correct integers w,..
We omit the messy details. Therefore, we have

o < 2% < 4n

k>7
m > 4k + 21

A practical example: if n = 2'3, we can choose k = 11, [= 8, and m = 60.
Therefore, with today’s double precision arithmetic, we can multiply 8192 bit
numbers in practically O(n) time (thinking of M as a constant because we are
using the hardware of the machine).

Theoretically, we can choose k = [and m = 6k; this choice of k is always
less than log n:

2"k < 4n

282k < p

k—2+4logk <logn

Since k > 7, logk > 2 and k < logn.
Therefore, If we apply the algorithm recursively for the m-bit multiplications,
we get T'(n) = O(nT'(logn)). Therefore,

T(n) < en(clogn)(cloglogn)(clogloglogn) ...

With a variant of this algorithm, and more careful analysis, Schénhage and
Strassen achieved an O(nlognloglogn) time algorithm, which remained the
best until 2007.

