Making faster multiplications

Saad Mneimneh

1 A simple divide-and-conquer inspired by Gauss

Consider the multiplication of two complex numbers:

$$
(a+b i)(c+d i)=a c+(b c+a d) i-b d
$$

which involves four multiplications: $a c, b c, a d$, and $b d$. Gauss observed that those quantities can be obtained by performing three multiplications only: ac, $b d$, and $(a+b)(c+d)$, then the term $(b c+a d)$ can be obtained as $(a+b)(c+d)-$ $a c-b d$. Since multiplication of n bit numbers required $\Theta\left(n^{2}\right)$ bit operations, compared to $\Theta(n)$ for addition and subtraction, it may be worth reducing the number of multiplications. Consider two n bit numbers u and v, and let us write

$$
\begin{aligned}
& u=a \cdot 2^{n / 2}+b \\
& v=c \cdot 2^{n / 2}+d
\end{aligned}
$$

where a, b, c, and d are $n / 2$ bit numbers. For simplicity, we may assume that n is a power of 2 , but we can use floors and ceilings to adjust for an n that is not a power of 2 .

$$
u v=\left(a \cdot 2^{n / 2}+b\right)\left(c \cdot 2^{n / 2}+d\right)=a c \cdot 2^{n}+(b c+a d) 2^{n / 2}+b d
$$

Using Gauss' idea, we can perform three multiplications to obtain all terms. Note that multiplication by a power of 2 is really just a shift operation; therefore, if we apply this idea recursively, we obtain a recurrence for the time:

$$
T(n)=3 T(n / 2)+\Theta(n)
$$

2 The Master theorem

Consider the following recurrence:

$$
T(n)= \begin{cases}\Theta(1) & 1 \leq n \leq n_{0} \\ a T(n / b)+\Theta(g(n)) & n>n_{0}\end{cases}
$$

where:

- $a \geq 1$
- $b>1$
- g is asymptotically positive

Then,

- $g(n) / n^{\log _{b} a}=O\left(n^{-\epsilon}\right)$ for some $\epsilon>0 \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)$
- $g(n) / n^{\log _{b} a}=\Theta\left(\log ^{k} n\right)$ for some $k \geq 0 \Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
- $g(n) / n^{\log _{b} a}=\Omega\left(n^{\epsilon}\right)$ for some $\epsilon>0$ and $a g(n / b) \leq c g(n)$ for some $c<1$ and $n>n_{0} \Rightarrow T(n)=\Theta(g(n))$

We usually interpret n / b as either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. The proof of the Master theorem can be found in the book Introduction to Algorithms by CLRS.

3 A better Master theorem, the Bazzi method

Consider the following recurrence:

$$
T(n)= \begin{cases}\Theta(1) & 1 \leq n \leq n_{0} \\ \sum_{i=1}^{k} a_{i} T\left(n / b_{i}\right)+\Theta(g(n)) & n>n_{0}\end{cases}
$$

where:

- $n_{0}>b_{i}$ and $n_{0} \geq b_{i} /\left(b_{i}-1\right)$ for $1 \leq i \leq k$
- $a_{i}>0$ for $1 \leq i \leq k$
- $b_{i}>1$ for $1 \leq i \leq k$
- $k \geq 1$
- $g(n)$ is non-negative and satisfies:

$$
u \in\left[n / b_{i}, n\right] \Rightarrow c_{1} g(n) \leq g(u) \leq c_{2} g(n)
$$

for $1 \leq i \leq k$ where c_{1} and c_{2} are positive constants ${ }^{1}$
Then,

$$
T(n)=\Theta\left(x^{p}\left(1+\int_{1}^{n} \frac{g(u)}{u^{p+1}} d u\right)\right)
$$

where p is the unique solution of $\sum_{i=1}^{k} a_{i} b_{i}^{-p}=1$.
Again, we usually interpret n / b_{i} as either $\left\lfloor n / b_{i}\right\rfloor$ or $\left\lceil n / b_{i}\right\rceil$. The proof of this theorem can be found at http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf.

[^0]Examples:

- If $T(n)^{2}=2 T(n / 4)+3 T(n / 6)+\Theta(n \log n)$, then $p=1$ and $T(n)=$ $\Theta\left(n \log ^{2} n\right)$.
- If $T(n)=2 T(n / 2)+\frac{8}{9} T(3 n / 4)+\Theta\left(n^{2} / \log n\right)$, then $p=2$ and $T(n)=$ $\Theta\left(n^{2} / \log \log n\right)$.
- If $T(n)=T(n / 2)+\Theta(\log n)$, then $p=0$ and $T(n)=\Theta\left(\log ^{2} n\right)$.
- If $T(n)=\frac{1}{2} T(n / 2)+\Theta(1 / n)$, then $p=-1$ and $T(n)=\Theta((\log n) / n)$.
- If $T(n)=4 T(n / 2)+\Theta(n)$, then $p=2$ and $T(n)=\Theta\left(n^{2}\right)$.

4 Back to Section 1

Our recurrence is:

$$
T(n)=3 T(n / 2)+\Theta(n)
$$

Applying the Bazzi method (just for a change from the classical Master method), we get $3 \cdot 2^{-p}=1 \Rightarrow p=\log _{2} 3$.

$$
\begin{gathered}
\int_{1}^{n} \frac{u}{u^{\log _{2} 3+1}} d u=\int_{1}^{n} u^{-\log _{2} 3} d u=\left.\frac{u^{1-\log _{2} 3}}{1-\log _{2} 3}\right|_{1} ^{n}=\Theta\left(n^{1-\log _{2} 3}\right) \\
T(n)=\Theta\left(n^{\log _{2} 3}\left(1+n^{1-\log _{2} 3}\right)\right)=\Theta\left(n^{\log _{2} 3}+n\right)=\Theta\left(n^{\log _{2} 3}\right)=\Theta\left(n^{1.59}\right)
\end{gathered}
$$

5 Strassen's divide-and-conquer algorithm

Consider the multiplication of two $n \times n$ matrices. If $c=a b$, then

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Therefore, the running the basic algorithm for matrix multiplication is $\Theta\left(n^{3}\right)$ (each of the n^{2} entries in c requires n multiplications and $n-1$ additions). Strassen observed that if we divide the matrices into four blocks, we have the following (here a, b, c, d, e, f, g, and h are all $\frac{n}{2} \times \frac{n}{2}$ matrices):

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & d f+d h
\end{array}\right]
$$

Therefore, in the most straight forward way, we require eight multiplications of $\frac{n}{2} \times \frac{n}{2}$ matrices. Once we have those results, we need $\Theta\left(n^{2}\right)$ time to combine them by adding $\frac{n}{2} \times \frac{n}{2}$ matrices. If we apply this idea recursively we get:

$$
T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)
$$

which leads to $T(n)=\Theta\left(n^{3}\right)$. Strassen's idea is to perform seven multiplications only, and combine them in $\Theta\left(n^{2}\right)$ time as follows:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{cc}
p_{5}+p_{4}-p_{2}+p_{6} & p_{1}+p_{2} \\
p_{3}+p_{4} & p_{1}+p_{5}-p_{3}-p_{7}
\end{array}\right]
$$

where

- $p_{1}=a(f-h)$
- $p_{2}=(a+b) h$
- $p_{3}=(c+d) e$
- $p_{4}=d(g-e)$
- $p_{5}=(a+b)(e+h)$
- $p_{6}=(b-d)(g+h)$
- $p_{7}=(a-c)(e+f)$

Strassen's algorithm leads to the following recurrence:

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

which has $T(n)=\Theta\left(n^{\log _{2} 7}\right)=\Theta\left(n^{2.81}\right)$ as a solution (using results of Section 2 and/or Section 3).

6 Fast Fourrier transform

Consider the problem of multiplying two polynomials $a(x)=a_{0}+a_{1} x+a_{2} x^{2}+$ $\ldots+a_{r} x^{r}$ and $b(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{s} x^{s}$ (assume $a_{r} \neq 0$ and $b_{s} \neq 0$). If $c(x)=a(x) b(x)$, then $c(x)$ has degree $r+s$. We can expand the two polynomial to have n terms by adding zero coefficients. Therefore, let $n-1 \geq r+s$ and write:

$$
\begin{aligned}
a(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1} \\
b(x) & =a_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{n-1} x^{n-1} \\
c(x) & =c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{n-1} x^{n-1}
\end{aligned}
$$

where $c_{j}=\sum_{k=0}^{j} a_{k} b_{j-k}$ for $0 \leq j \leq n-1$.
Therefore, the most straight forward way for computing all c_{j} 's requires $\Theta\left(n^{2}\right)$ time. We will explore a way to compute all c_{j} 's in $\Theta(n \log n)$ using the Discrete Fourrier transform (DFT), more specifically, an implementation of the it known as Fast Fourrier Transform (FFT).

Given a polynomial $a(x)$ of degree $n-1$, let $a\left(x_{0}\right), \ldots, a\left(x_{n-1}\right)$ be the values of $a(x)$ on n distinct points x_{0}, \ldots, x_{n-1}. One can show that $a\left(x_{0}\right), \ldots, a\left(x_{n-1}\right)$ uniquely determine the polynomial $a(x)$.

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \ldots & x_{n-1}^{n-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{c}
a\left(x_{0}\right) \\
a\left(x_{1}\right) \\
\vdots \\
a\left(x_{n-1}\right)
\end{array}\right]
$$

When x_{0}, \ldots, x_{n-1} are distinct, the matrix on the left is known as the Vandermonde matrix and is always invertible (the determinant is different than 0). Therefore, a_{0}, \ldots, a_{n-1} are uniquely determined.

Given $a\left(x_{0}\right), \ldots, a\left(x_{n-1}\right)$, and similarly, $b\left(x_{0}\right), \ldots, b\left(x_{n-1}\right)$, we can determine $c\left(x_{0}\right), \ldots, c\left(x_{n-1}\right)$ in $\Theta(n)$ time by simply multiplying the corresponding terms, i.e. $c\left(x_{j}\right)=a\left(x_{j}\right) b\left(x_{j}\right)$.

Multiply $a(x)$ and $b(x)$

1. obtain $a\left(x_{0}\right), \ldots, a\left(x_{n-1}\right)$ from a_{0}, \ldots, a_{n-1}
2. obtain $b\left(x_{0}\right), \ldots, b\left(x_{n-1}\right)$ from b_{0}, \ldots, b_{n-1}
3. compute $c\left(x_{j}\right)=a\left(x_{j}\right) b\left(x_{j}\right)$ for $0 \leq j \leq n-1$ in $\Theta(n)$ time
4. obtain c_{0}, \ldots, c_{n-1} from $c\left(x_{0}\right), \ldots, c\left(x_{n-1}\right)$

We will show that each of steps (1), (2), and (4) can be done in $\Theta(n \log n)$ time. The idea is to consider a special set of n values for $x_{0}, \ldots x_{n-1}$; they will consist of the n complex $n^{\text {th }}$ roots of 1 (so they will be complex numbers).

Let n be a power of 2 . Consider the complex number $w=e^{i 2 \pi / n}=$ $\cos 2 \pi / n+i \sin 2 \pi / n$. The powers of w are:

$$
1, w, w^{2}, \ldots w^{n-1}
$$

where $w^{k}=e^{i 2 \pi k / n}=\cos 2 \pi k / n+i \sin 2 \pi k / n$. Note that $\left(w^{k}\right)^{n}=1$ and that's why we call them the n complex $n^{\text {th }}$ roots of 1 , with w being the principal $n^{t h}$ root of 1 .

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & w & w^{2} & \ldots & w^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{n-1} & w^{2(n-1)} & \ldots & w^{(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{c}
a(1) \\
a(w) \\
\vdots \\
a\left(w^{n-1}\right)
\end{array}\right]
$$

We call $\left(a(1), \ldots, a\left(w^{n-1}\right)\right)$ the Discrete Fourrier Transform of $\left(a_{0}, \ldots, a_{n-1}\right)$ where:

$$
a\left(w^{j}\right)=\sum_{i=0}^{n-1} w^{i j} a_{i}
$$

If we let $a(x)=a_{0}(x)+x a_{1}(x)$ where

$$
\begin{aligned}
& a_{0}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\ldots a_{n-1} x^{n / 2-1} \\
& a_{1}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\ldots a_{n-2} x^{n / 2-1}
\end{aligned}
$$

then $a\left(w^{k}\right)=a_{0}\left(w^{2 k}\right)+w^{k} a_{1}\left(w^{2 k}\right)$. This means to evaluate $a(x)$ at $1, w \ldots, w^{n-1}$, we need to evaluate $a_{0}(x)$ and $a_{1}(x)$ at $1^{2}, w^{2}, \ldots,\left(w^{n-1}\right)^{2}$. But the squares of the $n^{t h}$ roots of 1 are exactly the $n / 2^{\text {nd }}$ roots of 1 . In fact

$$
\left(w^{k+n / 2}\right)^{2}=\left(w^{k}\right)^{2} \cdot w^{n}=\left(w^{k}\right)^{2} \cdot 1=\left(w^{k}\right)^{2}=e^{\frac{i 2 \pi k}{n / 2}}
$$

Therefore, to evaluate $a(x)$ on n points, we need to evaluate $a_{0}(x)$ and $a_{1}(x)$ on $n / 2$ points. If we apply this recursively, it leads to the following recurrence for time:

$$
T(n)=2 T(n / 2)+\Theta(n)
$$

This means that obtaining $a(1), a(w), \ldots, a\left(w^{n-1}\right)$ requires $\Theta(n \log n)$ time. That's the Fast Fourrier Transform (FFT). Once we obtain $c(1), c(w), \ldots, c\left(w^{n-1}\right)$ we need to compute $c_{0}, \ldots c_{n-1}$.

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & w & w^{2} & \ldots & w^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{n-1} & w^{2(n-1)} & \ldots & w^{(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1}
\end{array}\right]=\left[\begin{array}{c}
c(1) \\
c(w) \\
\vdots \\
c\left(w^{n-1}\right)
\end{array}\right]
$$

If we denote the matrix on the left by V, where $V_{i j}=w^{i j}$ (assuming indexing starts at 0), it is not hard to see that V^{-1} is such that $V_{i j}^{-1}=\frac{1}{n} w^{-i j}$.

$$
\left[V V^{-1}\right]_{i j}=\sum_{k=0}^{n-1} V_{i k} V_{k j}^{-1}=\frac{1}{n} \sum_{k=0}^{n-1}\left(w^{i-j}\right)^{k}
$$

If $i-j$ is a multiple of n (this happens only when $i-j=0$, i.e. $i=j$), and hence w^{i-j} is 1 , the above sum is 1 . Otherwise, the sum is a geometric sum equal to

$$
\frac{\left(w^{i-j}\right)^{n}-1}{w^{i-j}-1}=\frac{\left(w^{n}\right)^{i-j}-1}{w^{i-j}-1}=\frac{1-1}{w^{i-j}-1}=0
$$

Therefore,

$$
n\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n-1}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & w^{-1} & w^{-2} & \ldots & w^{-(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{-(n-1)} & w^{-2(n-1)} & \ldots & w^{-(n-1)(n-1)}
\end{array}\right]\left[\begin{array}{c}
c(1) \\
c(w) \\
\vdots \\
c\left(w^{n-1}\right)
\end{array}\right]
$$

The right side looks like a Discrete Fourrier transform with w replaced by w^{-1}.

Therefore, c_{0}, \ldots, c_{n-1} can be also obtained in $\Theta(n \log n)$ time. The inverse DFT is given by:

$$
c_{j}=\frac{1}{n} \sum_{i=0}^{n-1} w^{-i j} c\left(w^{i}\right)
$$

$7 \quad$ Schönhage-Strassen algorithm

We revisit the problem of multiplying two n bit numbers u and v. Divide u and v into K blocks of l bits each. We take K to be a power of 2 as follows:

$$
K=2^{k}, \quad L=2^{l}, \quad 2 n \leq 2^{k} l<4 n
$$

Therefore, u and v can be viewed as K digit numbers in base L

$$
u=u_{K-1} L^{K-1}+\ldots+u_{1} L+u_{0}, \quad v=v_{K-1} L^{K-1}+\ldots+v_{1} L+v_{0}
$$

Note that since $2^{k-1} l \geq n, u_{j}=v_{j}=0$ for $j \geq K / 2$. We would like to compute $w=u v$, and by applying FFT, we can find $\left(w_{K-2}, \ldots, w_{0}\right)$.

$$
w=w_{K-2} L^{K-2}+\ldots+w_{1} L+w_{0}
$$

Assuming we are using m bits for carrying out the arithmetic operations for FFT and inverse FFT, the running of this procedure is $O(K \log K M)=$ $O(M n k / l)$ where M is the time required for m-bit multiplications. Note that $w_{r}<(r+1) L^{2}<K L^{2}$; therefore, each w_{r} has at most $k+2 l$ bits and hence reconstructing the binary representation of w requires $O(K(k+l))=O(n+n k / l)$ time. The total running time of this algorithm is $O(n)+O(M n k / l)$.

Schönhage and Strassen showed that if $k \geq 7, m \geq 4 k+2 l$, and $w^{0}, \ldots w^{K-1}$ are computed in a specific way, then all m-bit multiplications of complex numbers will not propagate much error and will round to the correct integers w_{r}. We omit the messy details. Therefore, we have

$$
\begin{gathered}
2 n \leq 2^{k} l<4 n \\
k \geq 7 \\
m \geq 4 k+2 l
\end{gathered}
$$

A practical example: if $n=2^{13}$, we can choose $k=11, l=8$, and $m=60$. Therefore, with today's double precision arithmetic, we can multiply 8192 bit numbers in practically $O(n)$ time (thinking of M as a constant because we are using the hardware of the machine).

Theoretically, we can choose $k=l$ and $m=6 k$; this choice of k is always less than $\log n$:

$$
\begin{gathered}
2^{k} k<4 n \\
2^{k-2} k<n
\end{gathered}
$$

$$
k-2+\log k<\log n
$$

Since $k \geq 7, \log k>2$ and $k<\log n$.
Therefore, If we apply the algorithm recursively for the m-bit multiplications, we get $T(n)=O(n T(\log n))$. Therefore,

$$
T(n) \leq c n(c \log n)(c \log \log n)(c \log \log \log n) \ldots
$$

With a variant of this algorithm, and more careful analysis, Schönhage and Strassen achieved an $O(n \log n \log \log n)$ time algorithm, which remained the best until 2007.

[^0]: ${ }^{1}$ Any function $g(n)$ of the form $n^{\alpha} \log ^{\beta} n$ satisfies that condition.

