Making faster multiplications
Saad Mneimneh

1 A simple divide-and-conquer inspired by Gauss

Consider the multiplication of two complex numbers:

\[(a + bi)(c + di) = ac + (bc + ad)i - bd\]

which involves four multiplications: \(ac\), \(bc\), \(ad\), and \(bd\). Gauss observed that those quantities can be obtained by performing three multiplications only: \(ac\), \(bd\), and \((a + b)(c + d)\), then the term \((bc + ad)\) can be obtained as \((a + b)(c + d) - ac - bd\). Since multiplication of \(n\) bit numbers required \(\Theta(n^2)\) bit operations, compared to \(\Theta(n)\) for addition and subtraction, it may be worth reducing the number of multiplications. Consider two \(n\) bit numbers \(u\) and \(v\), and let us write

\[u = a \cdot 2^{n/2} + b\]
\[v = c \cdot 2^{n/2} + d\]

where \(a\), \(b\), \(c\), and \(d\) are \(n/2\) bit numbers. For simplicity, we may assume that \(n\) is a power of 2, but we can use floors and ceilings to adjust for an \(n\) that is not a power of 2.

\[uv = (a \cdot 2^{n/2} + b)(c \cdot 2^{n/2} + d) = ac \cdot 2^n + (bc + ad)2^{n/2} + bd\]

Using Gauss’ idea, we can perform three multiplications to obtain all terms. Note that multiplication by a power of 2 is really just a shift operation; therefore, if we apply this idea recursively, we obtain a recurrence for the time:

\[T(n) = 3T(n/2) + \Theta(n)\]

2 The Master theorem

Consider the following recurrence:

\[T(n) = \begin{cases}
\Theta(1) & 1 \leq n \leq n_0 \\
adT(n/b) + \Theta(g(n)) & n > n_0
\end{cases}\]
where:
• $a \geq 1$
• $b > 1$
• g is asymptotically positive

Then,
• $g(n)/n^{\log_b a} = O(n^{-\epsilon})$ for some $\epsilon > 0 \Rightarrow T(n) = \Theta(n^{\log_b a})$
• $g(n)/n^{\log_b a} = \Theta(\log^k n)$ for some $k \geq 0 \Rightarrow T(n) = \Theta(n^{\log_b a \log^{k+1} n})$
• $g(n)/n^{\log_b a} = \Omega(n^\epsilon)$ for some $\epsilon > 0$ and $ag(n/b) \leq cg(n)$ for some $c < 1$ and $n > n_0 \Rightarrow T(n) = \Theta(g(n))$

We usually interpret n/b as either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. The proof of the Master theorem can be found in the book Introduction to Algorithms by CLRS.

3 A better Master theorem, the Bazzi method

Consider the following recurrence:

$$T(n) = \begin{cases}
\Theta(1) & 1 \leq n \leq n_0 \\
\sum_{i=1}^{k} a_i T(n/b_i) + \Theta(g(n)) & n > n_0
\end{cases}$$

where:
• $n_0 > b_i$ and $n_0 \geq b_i/(b_i - 1)$ for $1 \leq i \leq k$
• $a_i > 0$ for $1 \leq i \leq k$
• $b_i > 1$ for $1 \leq i \leq k$
• $k \geq 1$
• $g(n)$ is non-negative and satisfies:

$$u \in [n/b_i, n] \Rightarrow c_1 g(n) \leq g(u) \leq c_2 g(n)$$

for $1 \leq i \leq k$ where c_1 and c_2 are positive constants

Then,

$$T(n) = \Theta\left(x^p \left(1 + \int_{1}^{n} \frac{g(u)}{u^{p+1}} du\right)\right)$$

where p is the unique solution of $\sum_{i=1}^{k} a_i b_i^{-p} = 1$.

Again, we usually interpret n/b_i as either $\lfloor n/b_i \rfloor$ or $\lceil n/b_i \rceil$. The proof of this theorem can be found at http://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf.

\footnote{Any function $g(n)$ of the form $n^\alpha \log^\beta n$ satisfies that condition.}
Examples:

- If $T(n) = 2T(n/4) + 3T(n/6) + \Theta(n \log n)$, then $p = 1$ and $T(n) = \Theta(n \log^2 n)$.
- If $T(n) = 2T(n/2) + \frac{8}{5}T(3n/4) + \Theta(n^2 / \log n)$, then $p = 2$ and $T(n) = \Theta(n^2 / \log \log n)$.
- If $T(n) = T(n/2) + \Theta(\log n)$, then $p = 0$ and $T(n) = \Theta(\log^2 n)$.
- If $T(n) = \frac{1}{2}T(n/2) + \Theta(1/n)$, then $p = -1$ and $T(n) = \Theta((\log n)/n)$.
- If $T(n) = 4T(n/2) + \Theta(n)$, then $p = 2$ and $T(n) = \Theta(n^2)$.

4 Back to Section 1

Our recurrence is:

$$T(n) = 3T(n/2) + \Theta(n)$$

Applying the Bazzi method (just for a change from the classical Master method), we get $3 \cdot 2^{-p} = 1 \Rightarrow p = \log_2 3$.

$$\int_1^n \frac{u}{u^{\log_2 3} + 1} du = \int_1^n \frac{u^{1 - \log_2 3} - 1}{1 - \log_2 3} du = \Theta(n^{1 - \log_2 3})$$

$$T(n) = \Theta(n^{\log_2 3} (1 + n^{1 - \log_2 3})) = \Theta(n^{\log_2 3} + n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.59})$$

5 Strassen’s divide-and-conquer algorithm

Consider the multiplication of two $n \times n$ matrices. If $c = ab$, then

$$c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$$

Therefore, the running the basic algorithm for matrix multiplication is $\Theta(n^3)$ (each of the n^2 entries in c requires n multiplications and $n - 1$ additions). Strassen observed that if we divide the matrices into four blocks, we have the following (here a, b, c, d, e, f, g, and h are all $\frac{n}{2} \times \frac{n}{2}$ matrices):

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & df + dh \end{bmatrix}$$

Therefore, in the most straightforward way, we require eight multiplications of $\frac{n}{2} \times \frac{n}{2}$ matrices. Once we have those results, we need $\Theta(n^2)$ time to combine them by adding $\frac{n}{2} \times \frac{n}{2}$ matrices. If we apply this idea recursively we get:

$$T(n) = 8T(n/2) + \Theta(n^2)$$
which leads to \(T(n) = \Theta(n^3) \). Strassen’s idea is to perform seven multiplications only, and combine them in \(\Theta(n^2) \) time as follows:

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 e & f \\
 g & h
\end{bmatrix}
= \begin{bmatrix}
 p_5 + p_4 - p_2 + p_6 \\
 p_3 + p_4 \\
 p_1 + p_2
\end{bmatrix}
\begin{bmatrix}
 p_1 + p_2 \\
 p_1 + p_5 - p_3 - p_7
\end{bmatrix}
\]

where
- \(p_1 = a(f - h) \)
- \(p_2 = (a + b)h \)
- \(p_3 = (c + d)e \)
- \(p_4 = d(g - e) \)
- \(p_5 = (a + b)(e + h) \)
- \(p_6 = (b - d)(g + h) \)
- \(p_7 = (a - c)(e + f) \)

Strassen’s algorithm leads to the following recurrence:

\[T(n) = 7T(n/2) + \Theta(n^2) \]

which has \(T(n) = \Theta(n^{\log_2 7}) = \Theta(n^{2.81}) \) as a solution (using results of Section 2 and/or Section 3).

6 Fast Fourier transform

Consider the problem of multiplying two polynomials \(a(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_r x^r \) and \(b(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_s x^s \) (assume \(a_r \neq 0 \) and \(b_s \neq 0 \)). If \(c(x) = a(x)b(x) \), then \(c(x) \) has degree \(r + s \). We can expand the two polynomial to have \(n \) terms by adding zero coefficients. Therefore, let \(n - 1 \geq r + s \) and write:

\[
\begin{align*}
 a(x) &= a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1} \\
 b(x) &= b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-1} x^{n-1} \\
 c(x) &= c_0 + c_1 x + c_2 x^2 + \ldots + c_{n-1} x^{n-1}
\end{align*}
\]

where \(c_j = \sum_{k=0}^{j} a_k b_{j-k} \) for \(0 \leq j \leq n - 1 \).

Therefore, the most straightforward way for computing all \(c_j \)'s requires \(\Theta(n^2) \) time. We will explore a way to compute all \(c_j \)'s in \(\Theta(n \log n) \) using the Discrete Fourier transform (DFT), more specifically, an implementation of the it known as Fast Fourier Transform (FFT).

Given a polynomial \(a(x) \) of degree \(n - 1 \), let \(a(x_0), \ldots, a(x_{n-1}) \) be the values of \(a(x) \) on \(n \) distinct points \(x_0, \ldots, x_{n-1} \). One can show that \(a(x_0), \ldots, a(x_{n-1}) \) uniquely determine the polynomial \(a(x) \).
When \(x_0, \ldots, x_{n-1} \) are distinct, the matrix on the left is known as the Vandermonde matrix and is always invertible (the determinant is different than 0). Therefore, \(a_0, \ldots, a_{n-1} \) are uniquely determined.

Given \(a(x_0), \ldots, a(x_{n-1}) \), and similarly, \(b(x_0), \ldots, b(x_{n-1}) \), we can determine \(c(x_0), \ldots, c(x_{n-1}) \) in \(\Theta(n) \) time by simply multiplying the corresponding terms, i.e. \(c(x_j) = a(x_j)b(x_j) \).

Multiply \(a(x) \) and \(b(x) \)
1. obtain \(a(x_0), \ldots, a(x_{n-1}) \) from \(a_0, \ldots, a_{n-1} \)
2. obtain \(b(x_0), \ldots, b(x_{n-1}) \) from \(b_0, \ldots, b_{n-1} \)
3. compute \(c(x_j) = a(x_j)b(x_j) \) for \(0 \leq j \leq n-1 \) in \(\Theta(n) \) time
4. obtain \(c_0, \ldots, c_{n-1} \) from \(c(x_0), \ldots, c(x_{n-1}) \)

We will show that each of steps (1), (2), and (4) can be done in \(\Theta(n \log n) \) time. The idea is to consider a special set of \(n \) values for \(x_0, \ldots, x_{n-1} \); they will consist of the \(n \) complex \(n^{th} \) roots of 1 (so they will be complex numbers).

Let \(n \) be a power of 2. Consider the complex number \(w = e^{i2\pi/n} = \cos 2\pi/n + i \sin 2\pi/n \). The powers of \(w \) are:

\[
1, w, w^2, \ldots, w^{n-1}
\]

where \(w^k = e^{i2\pi k/n} = \cos 2\pi k/n + i \sin 2\pi k/n \). Note that \((w^k)^n = 1 \) and that’s why we call them the \(n \) complex \(n^{th} \) roots of 1, with \(w \) being the principal \(n^{th} \) root of 1.

\[
\begin{bmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & w & w^2 & \ldots & w^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{n-1} & w^{2(n-1)} & \ldots & w^{(n-1)(n-1)}
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{bmatrix}
=
\begin{bmatrix}
a(1) \\
a(w) \\
\vdots \\
a(w^{n-1})
\end{bmatrix}
\]

We call \((a(1), \ldots, a(w^{n-1}))\) the Discrete Fourier Transform of \((a_0, \ldots, a_{n-1})\) where:

\[
a(w^j) = \sum_{i=0}^{n-1} w^{ij} a_i
\]
If we let \(a(x) = a_0(x) + xa_1(x) \) where
\[
a_0(x) = a_0 + a_2x + a_4x^2 + \ldots a_{n-1}x^{n/2-1}
\]
\[
a_1(x) = a_1 + a_3x + a_5x^2 + \ldots a_{n-2}x^{n/2-1}
\]
then \(a(w^k) = a_0(w^{2k}) + w^k a_1(w^{2k}) \). This means to evaluate \(a(x) \) at 1, \(w \), \(w^2 \), \ldots, \(w^{n-1} \), we need to evaluate \(a_0(x) \) and \(a_1(x) \) at \(1^2 \), \(w^2 \), \ldots, \((w^{n-1})^2 \). But the squares of the \(n^{th} \) roots of 1 are exactly the \(n/2^{nd} \) roots of 1. In fact
\[
(w^{k+n/2})^2 = (w^k)^2 \cdot w^n = (w^k)^2 \cdot 1 = (w^k)^2 = e^{\frac{ij\pi}{n/2}}
\]
Therefore, to evaluate \(a(x) \) on \(n \) points, we need to evaluate \(a_0(x) \) and \(a_1(x) \) on \(n/2 \) points. If we apply this recursively, it leads to the following recurrence for time:
\[
T(n) = 2T(n/2) + \Theta(n)
\]
This means that obtaining \(a(1), a(w), \ldots, a(w^{n-1}) \) requires \(\Theta(n \log n) \) time. That’s the Fast Fourier Transform (FFT). Once we obtain \(c(1), c(w), \ldots, c(w^{n-1}) \) we need to compute \(c_0, \ldots, c_{n-1} \).

\[
\begin{bmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & w & w^2 & \ldots & w^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{n-1} & w^{2(n-1)} & \ldots & w^{(n-1)(n-1)}
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_{n-1}
\end{bmatrix}
=
\begin{bmatrix}
c(1) \\
c(w) \\
\vdots \\
c(w^{n-1})
\end{bmatrix}
\]

If we denote the matrix on the left by \(V \), where \(V_{ij} = w^{ij} \) (assuming indexing starts at 0), it is not hard to see that \(V^{-1} \) is such that \(V_{ij}^{-1} = \frac{1}{n} w^{-ij} \).

\[
[VV^{-1}]_{ij} = \sum_{k=0}^{n-1} V_{ik}V_{kj}^{-1} = \frac{1}{n} \sum_{k=0}^{n-1} (w^{i-j})^k
\]
If \(i - j \) is a multiple of \(n \) (this happens only when \(i - j = 0 \), i.e. \(i = j \)), and hence \(w^{i-j} \) is 1, the above sum is 1. Otherwise, the sum is a geometric sum equal to
\[
\frac{(w^{i-j})^n - 1}{w^{i-j} - 1} = \frac{(w^n)^{i-j} - 1}{w^{i-j} - 1} = \frac{1 - 1}{w^{i-j} - 1} = 0
\]
Therefore,
\[
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_{n-1}
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 & \ldots & 1 \\
1 & w^{-1} & w^{-2} & \ldots & w^{-(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{-(n-1)} & w^{-(2(n-1))} & \ldots & w^{-(n-1)(n-1)}
\end{bmatrix}
\begin{bmatrix}
c(1) \\
c(w) \\
\vdots \\
c(w^{n-1})
\end{bmatrix}
\]
The right side looks like a Discrete Fourier transform with \(w \) replaced by \(w^{-1} \).
Therefore, \(c_0, \ldots, c_{n-1} \) can be also obtained in \(\Theta(n \log n) \) time. The inverse DFT is given by:

\[
c_j = \frac{1}{n} \sum_{i=0}^{n-1} w^{-ij} c(w^i)
\]

7 Schönhage-Strassen algorithm

We revisit the problem of multiplying two \(n \) bit numbers \(u \) and \(v \). Divide \(u \) and \(v \) into \(K \) blocks of \(l \) bits each. We take \(K \) to be a power of 2 as follows:

\[
K = 2^k, \quad L = 2^l, \quad 2n \leq 2^k l < 4n
\]

Therefore, \(u \) and \(v \) can be viewed as \(K \) digit numbers in base \(L \)

\[
u = u_{K-1}L^{K-1} + \ldots + u_1L + u_0, \quad v = v_{K-1}L^{K-1} + \ldots + v_1L + v_0
\]

Note that since \(2^{k-1}l \geq n \), \(u_j = v_j = 0 \) for \(j \geq K/2 \). We would like to compute \(w = uv \), and by applying FFT, we can find \((w_{K-2}, \ldots, w_0) \).

\[
w = w_{K-2}L^{K-2} + \ldots + w_1L + w_0
\]

Assuming we are using \(m \) bits for carrying out the arithmetic operations for FFT and inverse FFT, the running of this procedure is \(O(K \log KM) = O(Mnk/l) \) where \(M \) is the time required for \(m \)-bit multiplications. Note that \(w_r < (r+1)L^2 < KL^2 \); therefore, each \(w_r \) has at most \(k + 2l \) bits and hence reconstructing the binary representation of \(w \) requires \(O(K(k+l)) = O(n+nk/l) \) time. The total running time of this algorithm is \(O(n) + O(Mnk/l) \).

Schönhage and Strassen showed that if \(k \geq 7 \), \(m \geq 4k + 2l \), and \(w^0, \ldots, w^{K-1} \) are computed in a specific way, then all \(m \)-bit multiplications of complex numbers will not propagate much error and will round to the correct integers \(w_r \). We omit the messy details. Therefore, we have

\[
2n \leq 2^k l < 4n
\]

\[
k \geq 7
\]

\[
m \geq 4k + 2l
\]

A practical example: if \(n = 2^{13} \), we can choose \(k = 11, l = 8 \), and \(m = 60 \). Therefore, with today’s double precision arithmetic, we can multiply 8192 bit numbers in practically \(O(n) \) time (thinking of \(M \) as a constant because we are using the hardware of the machine).

Theoretically, we can choose \(k = l \) and \(m = 6k \); this choice of \(k \) is always less than \(\log n \):

\[
2^k k < 4n
\]

\[
2^{k-2} k < n
\]
\[k - 2 + \log k < \log n \]

Since \(k \geq 7 \), \(\log k > 2 \) and \(k < \log n \).

Therefore, if we apply the algorithm recursively for the \(m \)-bit multiplications, we get \(T(n) = O(nT(\log n)) \). Therefore,

\[T(n) \leq cn(c \log n)(c \log \log n)(c \log \log \log n) \ldots \]

With a variant of this algorithm, and more careful analysis, Schönhage and Strassen achieved an \(O(n \log n \log \log n) \) time algorithm, which remained the best until 2007.