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1 Introduction

Consider the following problem:

maximize x1 + x2

subject to 4x1 − x2 ≤ 8
2x1 + x2 ≤ 10
5x1 − 2x2 ≥ −2
x1, x2 ≥ 0

The feasible solution is a point (x1, x2) that lies within the region defined by
the lines 4x1 − x2 = 8, 2x1 + x2 = 10, 5x1 − 2x2 = −2, x1 = 0, and x2 = 0. We
need such a point that will maximize x1 + x2 = k. Note that x2 = k − x1 is a
line with slope −1 that intersects x1 = 0 at k. Therefore, as illustrated below,
the point (2, 6) is the optimal solution.

In general, it is not possible to solve geometrically, especially for higher
dimensions. Instead, we will develop a systematic way for finding the optimal
solution algebraically. Assume, in general, we are given the following Linear
Program.

maximize cT x
subject to Ax ≤ b

x ≥ 0



where A is an m × n matrix, and b and c are both vectors of size m and n
respectively. The matrix notation represents m constraints, for i = 1 . . . m, of
the form:

n∑

j=1

aijxj ≤ bi

The goal is to find a vector x of size n that satisfies the constraints and
maximizes the objective function cT x. Note that it is always possible to con-
vert a minimization to a maximization, and a ≥ constraint to a ≤ constraint.
Furthermore, if for some xi, the constraint xi ≥ 0 is not present, we can replace
xi by the difference x′i − x′′i , where x′i > 0 and x′′i > 0.

2 The slack form

We will transform the above linear program into a more useful form, known as
the slack form. We replace the ith constraint:

∑

j

aijxj ≤ bi

by ∑

j

aijxj + si = bi

si ≥ 0

where si ≥ 0 is a newly introduced slack variable. After introducing all m slack
variables, we make sure that b ≥ 0, i.e. bi ≥ 0 for all i. This can be achieved, if
bi < 0, by multiplying the ith constraint by −1 on both sides.

∑

j

−aijxj − si = −bi

Our slack form now becomes:

maximize cT x
subject to Ax = b (b > 0)

x ≥ 0

where A is an m × n matrix (n ≥ m), b ≥ 0 is a vector of size m, and c is a
vector of size n. We seek a solution x.

Assume that A can be divided into two parts, a square m×m matrix B, and
another (n−m)×m matrix N . Therefore, A = [B, N ]. Assume further that B
has an inverse B−1. Accordingly, let xT be [xT

B , xT
N ] with m basic variable xB

and n −m non-basic variables xN . Set xN = 0 and xB = B−1b. Therefore, x
is a feasible solution because Ax = [B,N ]x = BxB + NxN = BB−1b + 0 = b.
Using this initial feasible (but not necessarily optimal) solution, we introduce
the simplex algorithm below.



3 The simplex algorithm

Let Aj be the jth column of A (the column corresponding to variable xj).

Simplex
while ∃xj ∈ xN s.t. cj − cT

BB−1Aj > 0
increase xj until some xi ∈ xB is zero
switch the roles of xi and xj

update B (N , xB , and xN too)

Note that increasing xj ∈ xN changes xB too.

BxB + Ajxj = b ⇒ xB = B−1(b−Ajxj)

The new objective function becomes:

cT x = cT
BxB + cjxj = cT

BB−1(b−Ajxj) + cjxj = cT
BB−1b + (cj − cT

BB−1Aj)xj

Now observe that cj − cT
BB−1Aj is the coefficient of xj in the objective func-

tion, and cT
BB−1b is the value of the objective function prior to increasing

xj . Therefore, since cj − cT
BB−1Aj > 0, increasing xj increases the objec-

tive. But how much can we increase xj? We still require xB ≥ 0; therefore,
B−1(b− Ajxj) ≥ 0 ⇒ B−1b− B−1Ajxj ≥ 0. If B−1Aj ≤ 0 (all components of
B−1Aj are negative or zero), then we can increase xj as much as we want. In
this case, the linear program in unbounded. Otherwise, xj can increase until
some element in xB becomes 0.

When the condition of the while loop is false, i.e. cj − cT
BB−1Aj ≤ 0 for all

xj ∈ xN , the solution is optimal. We will later prove this fact using the concept
of duality.

4 Example of simplex

We will show an example of using simplex. While matrix notation is concise
for the purpose of illustration, we will not follow it here. Equivalently, we will
choose a non-basic variable with positive coefficient in the objective function,
and increase it.

maximize 3x1 + x2 + 2x3

subject to x1 + x2 + 3x3 ≤ 30
2x1 + 2x2 + 5x3 ≤ 24
4x1 + x2 + 2x3 ≤ 36
x1, x2, x3 ≥ 0

We obtain the slack form:



maximize 3x1 + x2 + 2x3

subject to x1 + x2 + 3x3 + x4 = 30
2x1 + 2x2 + 5x3 + x5 = 24
4x1 + x2 + 2x3 + x6 = 36
x1, x2, x3, x4, x5, x6 ≥ 0

Consider the initial solution given by xT
B = [x4, x5, x6] (the slack variables).

maximize 3x1 + x2 + 2x3

subject to x4 = 30− x1 − x2 − 3x3

x5 = 24− 2x1 − 2x2 − 5x3

x6 = 36− 4x1 − x2 − 2x3

x1, x2, x3, x4, x5, x6 ≥ 0

Therefore, x = [0, 0, 0, 30, 24, 36] is our initial feasible solution (Section 5 deals
with the problem when such an initial solution cannot be found). We now
repeatedly identify a variable xj ∈ xN with a positive coefficient in the objective
function and increase it until an xi ∈ xB becomes zero. We will always rewrite
the objective function in terms of non-basic variables so that this identification
is easy to make.

We can increase x1 up to 9 which will make x6 = 0. We exchange x1 and
x6.

maximize 27 + x2
4 + x3

2 − 3x6
4

subject to x4 = 21− 3x2
4 − 5x3

2 + x6
4

x5 = 6− 3x2
2 − 4x3 + x6

2
x1 = 9− x2

4 − x3
2 − x6

4
x1, x2, x3, x4, x5, x6 ≥ 0

Next, we can choose, say, x3. We can increase x3 up to 3/2 which will make
x5 = 0. Updating, we get:

maximize 111
4 + x2

16 − x5
8 − 11x6

16
subject to x1 = 33

4 − x2
16 + x5

8 − 5x6
16

x3 = 3
2 − 3x2

8 − x5
4 + x6

8
x4 = 69

4 + 3x2
16 + 5x5

8 − x6
16

x1, x2, x3, x4, x5, x6 ≥ 0

The only choice we have now is x2. Increasing x2 to 4 makes x3 = 0.

maximize 28− x3
6 − x5

6 − 2x6
3

subject to x1 = 8 + x3
6 + x5

6 − x6
3

x2 = 4− 8x3
3 − 2x5

3 + x6
3

x4 = 18− x3
2 + x5

2
x1, x2, x3, x4, x5, x6 ≥ 0

We stop with a value of 28 for the objective function. This is the opti-
mal solution for this linear program since all non-basic variables have neg-
ative coefficients in the objective function. Therefore, the solution is xT =
[x1, x2, x3, x4, x5, x6] = [8, 4, 0, 18, 0, 0].



5 Initial feasible solution

The slack variables may not offer a feasible solution as illustrated in the above
example. For instance, consider the following linear program:

maximize 2x1 − x2
subject to 2x1 − x2 ≤ 2

x1 − 5x2 ≤ −4
x1, x2 ≥ 0

Converting to slack form (and making b ≥ 0), we have:

maximize 2x1 − x2
subject to 2x1 − x2 + x3 = 2

−x1 + 5x2 − x4 = 4
x1, x2, x3, x4 ≥ 0

The initial solution is then given by xT = [x1, x2, x3, x4] = [0, 0, 2,−4] which is
not feasible (because x4 < 0). Therefore, we need a general approach by which
we either find an initial feasible solution, or determine that the linear program
is not feasible. Consider the following auxiliary linear program:

maximize −1T y
subject to Ax + Iy = b

x, y ≥ 0

where 1T = [1, . . . , 1] and I is the identity matrix.

Observation: the original linear program is feasible if and only if the auxiliary
linear program has optimal solution y = 0. Proof: on one hand, if the original
linear program is feasible, then there exists an x such that Ax = b. Therefore,
y = 0 is feasible for the auxiliary linear program, and since the objective is to
maximize −1T y and y ≥ 0, y = 0 is optimal. On the other hand, if the y = 0 is
the optimal solution for the auxiliary linear program, then we have found an x
such that Ax = b, which is feasible for the original linear program.

Therefore, we solve for the auxiliary linear program. If the optimal solution
is y = 0, then we use x as a feasible solution for the original linear program.
Otherwise, the original linear program is not feasible. We still need an initial
feasible solution for the auxiliary linear program: x = 0 and y = b is one (since
b ≥ 0).

6 Running time of simplex

If we think of the basic variables xB as the state of the simplex algorithm,

then simplex can be in at most
(

m + n
m

)
states. This is because we are not

changing the equations, but simply deciding which variables (the basic ones)



appear on the left hand side. Therefore, simplex either terminates after at most(
m + n

m

)
iterations, or it cycles. This, however, does not mean that the

objective function will increase indefinitely, as it is possible for an iteration not
to increase the objective. Here’s an example.

maximize x1 + x2 + x3

subject to x4 = 8− x1 − x2

x5 = x2 − x3

x ≥ 0

Suppose we choose x1 and increase it to 8 to make x4 = 0, we get:

maximize 8 + x3 − x4

subject to x1 = 8− x2 − x4

x5 = x2 − x3

x ≥ 0

The only choice now is x3, but we can only increase it up to 0; otherwise, x5

becomes negative. Doing so will not increase the objective function, but will
change the state.

maximize 8 + x2 − x4 − x5

subject to x1 = 8− x2 − x4

x3 = x2 − x5

x ≥ 0

We can continue by choosing x2 now.

Cycling is possible but rare. It is avoidable by making more careful choices
about which non-basic variable becomes basic. We are not going to explore this
any further.

7 Duality and optimality

We now prove that when simplex terminates we have the optimal solution.
Given the linear program (in slack form here):

maximize cT x
subject to Ax = b

x ≥ 0

construct its dual:
minimize yT b

subject to yT A ≥ cT

y ≥ 0

Note that yT A ≥ cT and, since x ≥ 0, yT Ax ≥ cT x. But yT Ax = yT (Ax) =
yT b. Therefore, cT x ≤ yT b. This means that whenever cT x = yT b, both x and



y are optimal solutions for their respective programs. We will prove that this
is in deed the case. When simplex terminates, the solution is given by xN = 0,
xB = B−1b, and cT x = cT

BB−1b. Moreover, cj − cT
BB−1Aj ≤ 0 for all xj ∈ xN .

Let yT = cT
BB−1. It is obvious that yT b = cT x. We will show that y is feasible

for the dual linear program.

yT B = cT
BB−1B = cT

B

yT Aj = cT
BB−1Aj ≥ cj for all xj ∈ xN

Therefore, yT A ≥ cT .


