
Depth/Breadth first search with applications

Saad Mneimneh

1 Introduction

Given a graph G = (V,E) and a vertex u ∈ V , we would like to explore every
vertex (and every edge) reachable from u. Let n = |V | and m = |E|. The
graph may be directed or undirected. We will assume that the graph is given
in its adjacency list representation (rather than adjacency matrix), i.e. for each
vertex u, we have a linked list adj[u] of the neighbors of u (all vertices v such
that (u, v) ∈ E. The advantages of such representation are:

• It requires Θ(n + m) space to store the vertices and their corresponding
lists, as opposed to Θ(n2) for the adjacency matrix. Recall the handshake
Lemma:

∑
u |adj[u]| = Θ(m) (m if directed, 2m if undirected). This is

particularly good for sparse graphs.

• It makes it possible to go through the neighbors of a vertex u in O(|adj[u]|)
time, i.e. linear in the number of neighbors. This turns out to be impor-
tant for graph traversal (see handshake Lemma above).

2 Depth first search, DFS

Consider the following algorithm that explore the graph in depth (recursively),
starting at a vertex u:

DFS − V ISIT (u)

d[u] ← time

for each v ∈ adj[u]
do if d[u] = 0

then DFS − V ISIT (v)
time ← time + 1
f [u] ← time

To be correct, the above algorithm requires that initially d[u] = 0 for all ver-
tices and time > 0. This requires O(n) time to set d[u] to false for every vertex
u. However, with proper implementation, this initialization can be avoided, and
the above algorithm runs in O(

∑
u |adj[u]|) = O(m) time and visits all vertices

(and edges) reachable from u. d[u] and f [u] represent the discovery time and
the finish time of vertex u, respectively. The discovery time of u is the time
when u is first discovered by the search. The finish time of u is the time when
DFS−V ISIT (u) terminates (all vertices and edges reachable from u have been
processed by the above algorithm). d[u] and f [u] will become useful later on.

If the entire graph is to be explored, one could repeat DFS−V ISIT starting
from an unvisited vertex. The following algorithm runs in O(n + m) time.

DFS(G)

for each vertex u ∈ V

do d[u] ← 0
time ← 0
for each vertex u ∈ V

do if d[u] = 0
then DFS − V ISIT (u)

3 Classifying edges

An important property of DFS is that it can be used to classify edges of the
graph G = (V,E). We can define four types of edges:

• Tree edges: edge (u, v) is a tree edge if v was first discovered by exploring
edge (u, v). The tree edges form a spanning forest of G (no cycles).

• Back edges: an edge (u, v) is a back edge if it connects vertex u to an
ancestor v in a DFS tree.

• Forward edges: an edge (u, v) is a forward edge if it connects a vertex u

to a descendant v in a DFS tree.

• Cross edges: all other edges.

It is easy to show that:

• (u, v) is a tree edge or a froward edge ⇔ d[u] < d[v] < f [v] < f [u]

• (u, v) is back edge ⇔ d[v] < d[u] < f [u] < f [v]

• (u, v) is a cross edge ⇔ d[v] < f [v] < d[u] < f [u]

Figure 1 illustrates the DFS algorithm with nodes labeled by their discovery
and finish times, and edges labeled by their types.

An important fact about undirected graphs is that forward and cross edges
never occur.

Theorem: DFS on an undirected graph yields only tree edges and back edges.

1 12

3 4

2 7

8 11

5 6

13 16

14 15

9 10

T

T
T

T

T

T

B
F

C C

C

C

C

Figure 1: DFS run, with tree edges emphasized

Proof: Let (u, v) ∈ E and assume without loss of generality that d[u] < d[v]. If
edge (u, v) is explored first in the direction from u to v, v is discovered then,
and (u, v) becomes a tree edge. If edge (u, v) is explored in the direction from
v to u, the (u, v) is obviously a back edge.

4 Detecting cycles

DFS can be used to detect whether a graph has cycles or not. Consider first
the case of an undirected graph G. We already know that all edges of G will
be classified as either tree edges or back edges. In addition, if G is acyclic, then
only tree edges will occur. This is because if G is acyclic, then it is a forest
(disconnected trees). Therefore, we have the following result: An undirected
graph is acyclic iff DFS yields no back edges.

Now let us consider the case of a directed graph. A directed acyclic graph
is called a DAG. The same result above extends to DAGs.

Theorem: A graph G is a DAG iff DFS yields no back edges.

Proof: ⇒: if there is a back edge (u, v), then by the definition of a back edge,
clearly G has a cycle. ⇐: if G has a cycle, let v be the first vertex to be discov-
ered on the cycle, and let (u, v) be the preceding edge. Since d[v] is smallest, all
vertices (including u) will be descendants of v in a DFS tree. Therefore, (u, v)
is a back edge.

Therefore, detecting cycles can be done in O(n + m) time by running DFS
and observing the types of edges it yields in the graph. For undirected graphs,
this can be done in O(n) time only: if at any point in time, at least as many
edges as vertices have been explored, we can stop the DFS because a forest must
have m ≤ n − 1.

5 Topological sorting

A topological sorting of a DAG G = (V,E) is a total order relation < on the
vertices of V such that for every edge (u, v) ∈ E, u < v. DFS can be used to
obtain a topological sorting and, hence, also as a proof that topological sorting
of a DAG is always possible. An important application of topological sorting is
the executing of tasks with dependencies. For instance, each task is represented
by a vertex. An directed edge (u, v) indicates that task v depends on task u

and, hence, task u must be performed first. If the resulting graph is a DAG, a
topological sorting gives an order by which we can execute the tasks. Here’s an
algorithm for topological sorting based on DFS.

Topological sorting

1. Run DFS to compute the finish times f [u] for every vertex u

2. Sort the vertices in order of decreasing f [u]

While sorting can be done in O(n) time using counting sort or radix sort,
it can be avoided by inserting a vertex onto the front of a linked list once the
vertex is finished. The proof that this algorithm results in a topological order
lies in Section 3. Since back edges cannot occur, all remaining edges (u, v)
satisfy f [v] < f [u].

Another observation about topological sorting is that a DAG has at least
one source (a vertex with no incoming edges) and at least one sink (a vertex
with no outgoing edges). The first vertex in the topological order is a source.
Similarly, the last vertex in the topological order is a sink.

6 Connectedness

A connected component of an undirected graph G is a maximal subgraph of G

that is connected. With a small modification, DFS can be used to identify the
connected components of an undirected graph. Observe that if DFS-VISIT is
started on a vertex u, all the vertices in the connected component containing u

will be visited. Therefore, we can assign each vertex u, a component number
cc[u], such that cc[u] = cc[v] iff u and v are in the same connected component.
The component number starts at 0 and is incremented by one every time we
start DFS-VISIT.

DFS − V ISIT (u)

d[u] ← time

cc[u] ← cc

for each v ∈ adj[u]
do if d[u] = 0

then DFS − V ISIT (v)
time ← time + 1
f [u] ← time

DFS(G)

for each vertex u ∈ V

do d[u] ← 0
time ← 0
cc ← 0
for each vertex u ∈ V

do if d[u] = 0
then cc ← cc + 1

DFS − V ISIT (u)

For directed graphs, we define the strongly connected components. A strongly
connected component of a directed graph G is a maximal set of vertices C such
that for every pair of vertices u and v in C, u and v are reachable from each
other. DFS can also be used to identify the strongly connected components
of a directed graph. Here’s an important observation: the strongly connected
components of a directed graph form a DAG. In other words, given the directed
graph G = (V,E), define the graph G = (V, E) where V is the set of strongly
connected components of G, and (C,C ′) ∈ E iff there exist u and v such that
u ∈ C and v ∈ C ′ and (u, v) ∈ E. G is a DAG. This is an immediate conse-
quence of strongly connected components. If G has a cycle, then some strongly
connected components of G will collapse into one, contradicting their maximal-
ity. Since G is a DAG, it must have a sink. We are not going to explicitly
construct G, but if we start DFS at a vertex u ∈ C, such that C is a sink in
G, then DFS-VISIT will terminate when all vertices in C (and only those) have
been visited, thus identifying that component. However, it is easier to identify
a vertex that belongs to a source component, by the following theorem.

Theorem: Let C and C ′ be two strongly connected components of a directed
graph G. If there is an edge (u, v) ∈ E such that u ∈ C and v ∈ C ′, then
maxu∈C f [u] > maxv∈C′ f [v].

Proof: There are two cases to consider. If DFS-VISIT visits C (a vertex in)
before C ′, then clearly all of C and C ′ will be explored before DFS-VISIT ter-
minates. Therefore, the first vertex visited in C will have a larger finish time
than any other vertices in C ′. On the other hand, if C ′ is visited first, then
DFS-VISIT will terminate after exploring all of C ′ but before exploring any
vertex in C, in which case the property also follows.

The theorem implies that a vertex with a largest finish time must be in a
source component. Note that the theorem does not imply that a vertex with a
smallest finish time must be in a sink component (consider the graph given by
V = {a, b, c} and E = {(a, b), (b, a), (a, c)}, where b can finish first). To work
around this, let GT be the graph obtained by reversing all edges in G (which can

be done in linear time given the adjacency list representation). The strongly
connected components of GT are exactly those of G. Furthermore, any sink
component of G is now a source component of G

T . This leads to the following
O(n + m) time algorithm for strongly connected components.

SCC(G)

1. Compute GT

2. Run DFS(GT) to compute the finish times f [u]

3. Run DFS(G) with the cc[u] addition, but in the main loop of DFS, con-
sider vertices in order of decreasing f [u] as obtained in 2

The proof that this works correctly is by induction: we always start DFS-
VISIT in a sink component, once the identified components have been removed.

7 Lexicographic BFS

Let G be an undirected and connected graph (if not, work individually on each
connected component). Lexicographic BFS uses an auxiliary labeling of the
vertices to impose an order on how they are explored. Initially, all vertices start
with an empty label φ.

Lex BFS(G)

for each vertex u ∈ V

do l[u] ← φ

f [u] ← 0
for i ← n downto 1

do let u be such that f [u] = 0 and l[u] is largest
f [u] ← i

for each vertex v ∈ adj[u] such that f [v] = 0
do add i to l[v]

The algorithm simply picks a vertex u that is unvisited (f [u] = 0) and has
the largest label, assigns i to f [u], and adds i (counts down) to the label of all of
its neighbors. This guarantees that, lexicographically, the neighbors of u have
now the largest labels (hence the name lexicographic BFS). Here’s an example
run:

a

b

c

d

e

u l[u] f [u] l[u] f [u] l[u] f [u] l[u] f [u] l[u] f [u] l[u] f [u]
a φ 0 φ 5 φ 5 φ 5 φ 5 φ 5
b φ 0 {5} 0 {5} 4 {5} 4 {5} 4 {5} 4
c φ 0 φ 0 {4} 0 {4} 0 {4, 2} 0 {4, 2} 1
d φ 0 φ 0 {4} 0 {4, 3} 0 {4, 3} 2 {4, 3} 2
e φ 0 {5} 0 {5, 4} 0 {5, 4} 3 {5, 4} 3 {5, 4} 3

The running time of lexicographic BFS depends on the detail of the imple-
mentation. The bulk of the work lies in finding a vertex with the largest label
and updating the labels. If not done carefully, the running time will exceed the
O(n + m) bound for BFS. Luckily, the labels need not be computed explicitly,
but can be simulated. A sequence of sets of vertices is maintained, initially
consisting of the single set of all vertices. The intention is that vertices in the
same set have the same label. Repeatedly, we select and delete an element u

from the last set (this is the one with the largest label). We now process the
edges of u. For every edge (u, v) such that f [v] = 0, we delete v from its set S

and move it to a newly created set T , inserted into the sequence immediately
after S. While processing the edges of u, each element v deleted from S will
be added to this newly created T . If S becomes empty, it is deleted. It should
be obvious that this technique simulates the lexicographic ordering of the la-
bels. If the sequence of sets is implemented as a doubly linked list, and each
set in the sequence also as a doubly linked list, then every operation on the sets
can be done in O(1) time, assuming each vertex maintains a pointer to its set.
Therefore, lexicographic BFS can run in O(n + m) time.

Ordering vertices by their finish times in lexicographic BFS has many impor-
tant applications in graph theory. We mention here some theory about chrodal
graphs. A cordal graph is a graph in which every cycle of length four or more
has a chord. The graph in the above example is chordal. Define a perfect elim-
ination scheme as a total order relation < on the vertices such that for every
vertex u, the set {v : v ∈ adj[u] and u < v} form a clique. Here’s a theorem,
stated without proof:

Theorem: A graph is chordal if and only if the order of vertices given by their
finish times in lexicographic BFS is a perfect elimination scheme. [The graph

in the above example is chordal, so verify that the Lex BFS order of the vertices

gives a perfect elimination scheme.]

Therefore, this suggests a way to recognize chordal graphs: order the vertices
by the finish times and check if that order is a perfect elimination scheme. The
first part can be done in O(n+m) time. We show that the second part can also
be done in O(n + m) time.

PERFECT
for each vertex u

do A(u) ← ∅
for each vertex u in Lex BFS order

do Xu ← {x ∈ adj[u]|f [x] > f [u]}
if Xu 6= ∅

then v ← minf [x] Xu

add Xu − {v} to A(v)
if A(v) − adj[v] 6= ∅ (actual checking)

then return false
return true

In the above algorithm, the list A(v) collects all the vertices which will
eventually have to be checked for adjacency with v. The actual checking is
delayed until v’s iteration. This technique is used so that in u’s iteration there
is no search for adj[v]. A(v) is implemented as a linked list, but may contain
repetitions. The actual checking looks for a vertex w in the list A(v) which is
not adjacent to v, and can be done in O(adj[v] + A[v]) time (how?). Therefore,
the entire algorithm runs in

O(n) +
∑

u

|adj[u]| +
∑

v

|A(v)|

where |A(v)| is taken at its final value. Now
∑

v |A(v)| ≤ +
∑

u |adj[u]| since
a given adj[u] appears as part of at most one of the lists A(v). Therefore, the
algorithm runs in O(n + m) time.

A modification of the above algorithm finds all maximal cliques of a chordal
graph (this problem is NP-hard in general). The idea is that every maximal
clique must correspond to a set {u} ∪ Xu. But not every such set is a maximal
clique, so some of these will need to be filtered out. Observe that {u} ∪ Xu is
not a maximal clique iff Xu is concatenated to A(u). Let s[v] be the size of
the largest set that is concatenated to A[v]. We need to check that s[u] < |Xu|
before we declare {u} ∪ Xu a maximal clique.

MAXIMAL-CLIQUES
for each vertex u

do s[u] ← 0
for each vertex u in Lex BFS order

do if adj[u] = ∅
then print {u}

Xu ← {x ∈ adj[u]|f [x] > f [u]}
if Xu 6= ∅

then v ← minf [x] Xu

s[v] ← max(s[v], |Xu| − 1)
if s[u] < |Xu|

then print {u} ∪ Xu

