
Network flows and shortest paths

Saad Mneimneh

1 Introduction

Let G = (V,E) be a directed graph with two special vertices: a source s and
a sink t. Every edge (u, v) has a capacity cap(u, v) ≥ 0. For convenience, we
define cap(u, v) = 0 if (u, v) in not an edge. More specifically, we work with a
modified set of edges {(u, v) : (u, v) ∈ E or (v, u) ∈ E} with cap(u, v) = 0 if
(u, v) 6∈ E. A flow is a real-valued function on edges with three properties:

• Skew symmetry: f(u, v) = −f(v, u). If f(u, v) > 0 we say there is a flow
from u to v.

• Capacity constraints: f(u, v) ≤ cap(u, v), if f(u, v) = cap(u, v) we say
that edge (u, v) is saturated.

• Flow conservation:
∑

v f(u, v) = 0, ∀u ∈ V − {s, t}.

The value |f | of the flow is defined as
∑

v f(s, v) and the problem is to find
a flow f with maximum value.

2 A linear programming formulation

One way to tackle the maximum flow problem is by formulating it as a lin-
ear program and using the simplex algorithm. Here’s a linear programming
formulation of the problem.

maximize
∑

v f(s, v)

subject to f(u, v) = −f(v, u)
f(u, v) ≤ cap(u, v)∑

v f(u, v) = 0, ∀u ∈ V − {s, t}
This linear program has a dual. We will explore this duality; however, we

will address the problem from a graph theoretic perspective.

3 Flows and cuts, a duality

A important concept associated with a flow is that of a cut. A cut X, V −X is
a partition of the vertices into two sets X and V −X such that s ∈ X and t ∈
V −X. We define the capacity of a cut cap(X,V −X) =

∑
u∈X,v∈V−X cap(u, v).

A cut of minimum capacity is called a minimum cut. Similarly, we define the
flow across a cut as f(X, V −X) =

∑
u∈X,v∈V−X f(u, v). Here’s an important

observation:
Lemma:For any flow f and any cut X, V −X, |f | = f(X, V −X).

Proof:

f(X,V −X) =
∑

u∈X,v∈V−X

f(u, v) =
∑

u∈X,v

f(u, v)−
∑

u∈X,v∈X

f(u, v)

=
∑

v

f(s, v) +
∑

u∈X−{s},v
f(u, v) +

∑

u∈X,v∈X

f(u, v) = |f |+ 0 + 0 = |f |

Since X−{s} does not contains s or t, the value of the second term is 0 by flow
conservation. The value of the third term is also 0, by skew symmetry.

Therefore, the value of the maximum flow is upper bounded by the value of
the minimum cut. In fact, the max-flow min-cut theorem states that these two
are equal (duality). To prove the theorem, we need to introduce the concepts
of a residual graph and an augmenting path.

4 Residual graph, augmenting path, and the max-
flow min-cut theorem

The residual graph R for a flow f is obtained from G = (V,E) by changing
the capacity (hence called residual capacity) of every edge (u, v) to res(u, v) =
cap(u, v) − f(u, v) (note that this is always ≥ 0). The set of edges of R is
{(u, v) : res(u, v) > 0}.

An augmenting path for flow f is a path p from s to t in R. We can
increase the value of f by increasing the flow on every edge of p by up to
min(u,v)∈p res(u, v). It turns out, this is a good mechanism for obtaining a
maximum flow.

Theorem: (max-flow min-cut theorem). The following are equivalent:

1. f is a maximum flow

2. there is no augmenting path for f

3. |f | = cap(X,V −X) for some cut X,V −X

s

a b

c d

t

3,3 4,1

1,1

3,2 3,02,2

4,2 3,2

3

3

1

1 2 2

2

2 1

2

3

1
a b

s

c d

t

Figure 1: Residual graph: edges are labeled by their capacities and flows on the
left, and their residual capacities (residual graph) on the right.

Proof: 1 ⇒ 2: If there is an augmenting path p for f then we can increase the
value of the flow by increasing the flow along p. 2 ⇒ 3: Let X be the set of
vertices reachable from s in R. Consider the cut X,V −X.

|f | =
∑

u∈X,v∈V−X

f(u, v) =
∑

u∈X,v∈V−X

cap(u, v) = cap(X, V −X)

where the second equality follows because u ∈ X, v ∈ V −X implies that (u, v)
is not an edge in R, i.e. res(u, v) = 0 which means f(u, v) = cap(u, v). 3 ⇒ 1:
Since |f | ≤ cap(X, V −X), |f | = cap(X, V −X) means that f is maximum flow
and X, V −X is a minimum cut.

Based on the above theorem, here’s a basic algorithm for the maximum flow
problem:

Ford and Fulkerson
for each (u, v)

do f(u, v) ← 0
form R from G and f
while ∃ an augmenting path p (a path from s to t in R)

do for each (u, v) ∈ p
do f(u, v) ← f(u, v) + min(u,v)∈p res(u, v)

form R from G and f

If all edge capacities are integers, the augmenting path algorithm increases
the flow by at least one with every augmentation and, therefore, computes a
maximum flow f∗ in at most |f∗| augmentations. Furthermore, f∗(u, v) will
be an integer for every edge (u, v). Unfortunately, if the capacities are large
integers, the value of the maximum flow may be large, and the augmenting
path algorithm may make many augmentations (see Figure 2 below).

Furthermore, if the capacities are irrational the algorithm may not halt,
and although successive flow values converge they need not converge to the

s

a b

t

c c

1

c c

s

a b

t

c,1 c,0

1,1

c,0 c,1

s

a b

t

c,1 c,1

1,0

c,1 c,1

Figure 2: After 2c augmentations, alternately along [s, a, b, t] and [s, b, a, t], the
flow is maximum.

value of the maximum flow. Thus if the algorithm is to be efficient we must
select augmenting paths carefully. We discuss two possibilities in the following
sections.

5 Maximum capacity augmentation

A natural way to select augmenting paths is to always augment along a path of
maximum residual capacity, i.e. a path p in the residual graph that maximizes
min(u,v)∈p res(u, v). The basis for this method is the following observation:

Lemma: Starting from the zero flow, there is a way to construct a maximum
flow in at most m augmentations.

Proof: Given the maximum flow f∗, consider the graph G∗ obtained from
G by removing edges (u, v) with f∗(u, v) ≤ 0. Repeatedly, find a path p from
s to t in G∗, and decrease the flow f∗ along p by min(u,v)∈p f ∗ (u, v). At least
one edge on p will now have zero flow; remove all such edges. Each path finding
step deletes at least one edge of G∗; thus, this algorithm halts in at most m
steps, having reduced f∗ to a flow of value zero (although there may still be
cycles of flow). Constructing the maximum flow in at most m augmentations
corresponds to the backward process.

Based on the above lemma, one can show that maximum capacity augmen-
tation is efficient when capacities are integers. In fact, we have the following
theorem:

Theorem: Maximum capacity augmentation produces successive flow values that
converge to the value of the maximum flow. If the capacities are integers, the
algorithm finds a maximum flow in O(m log c) augmenting steps, where c is the
largest edge capacity.

Proof: We will prove the second part of the theorem (integer capacities). Let
f be any flow and f∗ be a maximum flow. Consider the residual graph R of
f . Starting from the zero flow on R, there are at most m augmenting paths
whose residual capacities sum to |f∗| − |f |. Therefore, the maximum capacity

augmenting path has residual capacity at least (|f∗| − |f |)/m. Now consider
a sequence of 2m maximum capacity augmentations, starting from flow f . At
least of these must augment the flow by an amount ≤ (|f∗| − |f |)/(2m). There-
fore, after 2m or fewer maximum capacity augmentations, the capacity of a
maximum capacity augmenting path is reduced by a factor of two. Since this
capacity is initially at most c and is at least one unless the flow is maximum,
after O(m log c) maximum capacity augmentations the flow must be maximum.

It remains to show a method for finding a maximum capacity augmenting
path, and this will determine the total running time of the algorithm. We can
use a suitable modification of Dijkstra’s algorithm for finding shortest paths.
Dijkstra’s algorithm works by first setting d[s] = 0 and d[u] = ∞ for all vertices
u 6= s, then repeatedly selecting the vertex u with the smallest distance d[u],
and relaxing its edges, i.e. setting d[v] = min(d[v], d[u] + w(u, v)), where v is
a neighbor of u and w(u, v) is the weight of the edge (u, v). In fact, relaxing
edges enough times guarantees a correct computation of shortest distances from
s as long as we have no negative weight cycles (Bellman-Ford algorithm), but
Dijkstra’s algorithm has the advantage of relaxing every edge only once. Note,
however, that Dijkstra’s algorithm works only when weights are non-negative.
In the following pseudocode, we assume that all vertices have been properly
initialized to unvisited, d[u] to ∞, and d[s] to 0. The actual shortest path tree
can be obtained by updating π[v], the parent of v, to u each time d[v] changes
to d[u] + w(u, v).

Dijkstra(G)
Q ← {s}
while Q is not empty

u ← arg minu∈Q d[u]
Q ← Q− {u}
visited[u] ← true
for each v ∈ adj[u]

do d[v] ← min(d[v], d[u] + w(u, v))
if not visited[v]

then Q ← Q ∪ {v}

The correctness of Dijkstra’s algorithm can be derived by induction. Our
invariant is the following: when a vertex u is removed from Q, d[u] is the
shortest distance from s to u, denoted by d∗[u]. Let u be the first vertex to
violate this property and assume d[u] > d∗[u] when u is about to be removed
from Q. Consider a shortest path p from s to u. Since s 6∈ Q and u ∈ Q,
there must be x 6∈ Q and y ∈ Q such that (x, y) is an edge of the path. Note
that the path from s to x along p is shortest, and the path from s to y along
p is shortest. Therefore, d[y] = d∗[y] (because d[y] = d[x] + w(x, y) has been
considered). Now d∗[u] = d∗[y] + d∗[y → u]. Since all weights are non-negative,
d∗[u] ≥ d∗[y] = d[y]. Therefore, d[u] > d[y] contradicting the fact that u will be
removed from Q.

Note that Dijkstra’s algorithm finds for each vertex u a path p such that p =
arg minp

∑
(u,v)∈p w(u, v). What we need, however, is a path p = arg maxp min(u,v)∈p res(u, v).

Therefore, by considering weights to be the negatives of the capacities, we seek
a path p = arg minp max(u,v)∈p w(u, v), where w(u, v) = −res(u, v). With this
modification, the shortest path is now a path that minimizes not the distance
(total weight of edges on the path), but the largest weight on the path. Having
negative weights is not a problem for this modified Dijkstra’s algorithm, as we
will see shortly.

Modified−Dijkstra(G)
Q ← {s}
while Q is not empty

u ← arg minu∈Q d[u]
Q ← Q− {u}
visited[u] ← true
for each v ∈ adj[u]

do d[v] ← min(d[v],max(d[u], w(u, v)))
if not visited[v]

then Q ← Q ∪ {v}

The correctness of the modified Dijkstra’s algorithm can be derived also by
induction. Our invariant is the same: when a vertex u is removed from Q,
d[u] = d∗[u], where shortest path is now a path that minimizes the maximum
weight along the path, and d∗[u] is that weight. Let u be the first vertex to
violate this property and assume d[u] > d∗[u] when u is about to be removed
from Q. Consider a shortest path p from s to u. Since s 6∈ Q and u ∈ Q,
there must be x 6∈ Q and y ∈ Q such that (x, y) is an edge of the path. The
path p can be chosen so that the path from s to x along p is shortest, and the
path from s to y along p is shortest. Therefore, d[y] = d∗[y] (because d[y] =
max(d[x], w(x, y)) has been considered). Now d∗[u] = max(d∗[y], max y → u),
thus d∗[u] ≥ d∗[y] = d[y] (regardless of the weights). Therefore, d[u] > d[y]
contradicting the fact that u will be removed from Q.

With proper implementation, Dijkstra’s algorithm runs in O(m log n) time
using a heap for Q. Therefore, the total running time for finding a maximum flow
based on the maximum capacity augmentation algorithm is O(m2 log n log c).

It is worth noting that a special case of Dijkstra’s algorithm when all weights
are equal (e.g. to 1) reduces to a breadth first search on the graph as illustrated
below. The algorithm runs in O(m) time starting at vertex s and explores all
vertices (and edges) reachable from s. The O(m) bound for the running time
is possible due to the simplified operations on Q (every newly added vertex to
Q has the largest distance so far). Again, the BFS tree can be obtained by
updating π[v], the parent of v, to u each time d[v] changes to d[u] + 1. We will
use BFS in the following section.

BFS(G)
Q ← {s}
while Q is not empty

u ← first element of Q
Q ← Q− {u}
visited[u] ← true
for each v ∈ adj[u]

do d[v] ← min(d[v], d[u] + 1)
if not visited[v] and v 6∈ Q

then add v to the end of Q

6 Shortest path augmentation

Another way to select augmenting paths is along shortest paths, where we mea-
sure the length of the path as the number of edges on the path, i.e. all weights
are 1. If we always choose a shortest augmenting path, we can show that we
will have at most O(mn) augmentations, regardless of whether edge capacities
are integers or not. Since a shortest path can be found by BFS, which runs in
O(m), the total running time for finding a maximum flow based on the shortest
path augmentation algorithm is O(m2n). However, we develop here a better
way in which we augment along all shortest paths simultaneously. For this, we
need the concept of a blocking flow.

A flow is blocking if every path from s to t contains a saturated edge (recall
a saturated edge (u, v) is such that f(u, v) = cap(u, v). Given a flow f , let d[u]
be the distance from s as computed by the BFS algorithm on the residual graph
R of flow f . Define the level graph L containing only vertices reachable from
s in R and edges (u, v) of R such that d[v] = d[u] + 1. Thus, L contains every
shortest augmenting path and is constructed in O(m) time by BFS. Our aug-
mentation works, not by simply augmenting along a shortest path in R, but by
finding a blocking flow for L. We will call such an augmentation a blocking step.

Theorem: There are at most n− 1 blocking steps.

Proof: Let f be the current flow, R its residual graph, L its level graph, R′ the
residual graph after a blocking step, and d[u] and d′[u] the distances computed
by BFS on R and R′ respectively. Each edge (u, v) ∈ R has d[v] ≤ d[u] + 1.
Each edge in R′ is either an edge in R or the reverse of an edge in L. Thus
each edge (u, v) ∈ R′ also has d[v] ≤ d[u] + 1. This means that d′[u] ≥ d[u]
and, in particular, d′[t] ≥ d[t]. We will show that d′[t] cannot be equal to d[t].
Assume otherwise and let p be a shortest path from s to t in R′. This means
that d′[v] = d′[u]+1 for every edge (u, v) on p, which means that d[v] = d[u]+1
for every edge (u, v) on p (because d′[u] ≥ d[u]), which means every such edge is
also in L. This contradicts the fact that at least one such edge is saturated by
the blocking step and does not appear in R′. Therefore, d′[t] > d[t]. Since the

s,0

a,1 b,1

c,2 d,2

t,3

3,3 4,1

3,1

3,3

2,2

4,1 3,3

s,0

a,2 b,1

c,3 d,2

t,4

3,1

1,1

2,1 2,0

3,1

s,0

a,3 b,1

c,4 d,2

t,5

2,1

1,1 2,12,1

2,1

s,0

a,3 b,1

c,∞ d,2

t,∞

3,3 4,3

1,1

3,1

3,22,1

4,3 3,3

s

a b

c d

t

3 4

1

3 32

4 3

Figure 3: Initial graph followed by three successive level graphs with nodes
labeled by their distances, and edges by their residual capacity and flow. The
final graph shows the final flow.

shortest distance from s to t is at least one, at most n− 1, and increases by at
least one or becomes undefined with each blocking step, the number of blocking
steps is at most n− 1.

It remains to show a method for finding a blocking flow, and this will de-
termine the total running time of the algorithm. We will use a modification of
DFS as follows:

Blocking − flow(L, s, t)
while s has outgoing edges

run DFS-VISIT(s) on L with the following two modifications

case 1: If t is reached, augment along the path
p consisting of the edges in the recursion stack,
by min(u,v)∈p res(u, v). Update capacities and
delete all saturated edges on that path.
Stop DFS-VISIT.

case 2: If a vertex v with no outgoing edges is
reached, delete the edge (u, v) at the top of the
recursion stack. Continue DFS-VISIT.

The above algorithm deletes an edge (u, v) from L only if (u, v) is saturated
or every path from v to t contains a saturated edge. It follows that the algorithm
constructs a blocking flow.

To analyze the running time of this algorithm, think about the recursion
stack of edges. If an edge is pushed onto the stack, it will either lead to an
augmenting path (case 1), or it will be popped off the stack (case 2). In case
1, we end up with O(n) edges in the stack (length of a path from s to t) and
this requires O(n) time for the augmentation, which will then delete at least
one edge. Therefore, the total contribution of case 1 is O(nm). When an edge
is popped off the stack, it is deleted and, therefore, every such step must be
associated with the deletion of an edge. Thus, the total contribution of case 2
is O(m). The total running time is O(nm) + O(m) = O(nm).

Putting it all together, we have an algorithm for finding a maximum flow
that runs in O(n2m) time. Another algorithm, based on the concept of a pre-
flow with

∑
v f(u, v) ≥ 0 (flow conversation is not satisfied), which is then

converted into a flow, computes a blocking flow in O(n2) time, resulting in
an O(n3) running time for maximum flow. Sleator and Tarjan discovered a
way to compute a blocking flow in O(m log n) using a special data structure
that involves linking and cutting trees. This results in an O(nm log n) running
time for maximum flow, which is better than O(n3) for sparse graphs (when
m = o(n2)).

