Hash tables
Motivation: Need to insert \& search keys in constant time Direct addressing: Store key k in $A[k]$ (Assuming all keys are integers, but that' ok)

Problem: Range of keys very large even if actual number of keys n is much smaller! (similar problem to counting sort t)

Idea: Use a table with only m entries $0,1,2, \ldots, m-1$.

- Map Key k to $h(k) \in\{0,1,2, \ldots, m-1\}$
- h is a hash function.

Problem: Keys Can hash into the same slot
(pigeon hole principle, not too many slots)
Typical Solution: (but other solutions also exist)
use chaining
Each slot has a
 linked list of keys that hash to it.

Insert: Always at head of list $\Rightarrow \theta$ (1) time.

What about search?

Analysis of search time.
Assume Simple Uniform Hashing

- Every key hashes into any slot with equal probability $\frac{1}{\mathrm{~m}}$
- Keys hash independently!

This is a strong assumption:

- Hard to guarantee, but
- Several common techniques work well in practice
- Can be relaxed.

Let

$$
x_{i j}= \begin{cases}1 & \text { itu key hashes to } j^{\text {th }} \text { slot } \\ 0 & \text { otherwise }\end{cases}
$$

What does Simple Uniform Hashing tell us?

- $P\left(X_{i j}=1\right)=\frac{1}{m} \quad$ (any slot for th key is equally likely)
- Moreover , if we know $h(k)=j$ then

$$
P\left(x_{i j}=1\right)=\left\{\begin{array}{l}
\text { still } \frac{1}{m} \quad k e y(i) \neq k \text { (independence) } \\
1 \quad k_{e y}(i)=k
\end{array}\right.
$$

Let $n_{j}=$ length of list $j=\sum_{i=1}^{n} X_{i j}$

Unsuccessful seach: If $h(k)=j$

$$
O\left(1+E\left[n_{j}\right]\right)
$$

compute h go through entire list

$$
E\left[n_{j}\right]=E\left[\sum_{i=1}^{n} x_{i j}\right]=\sum_{i=1}^{n} E\left[x_{i j}\right]=\sum_{i=1}^{n} \frac{1}{m}=\frac{n}{m}
$$

(all keys are $\neq k$)
So an vusuccessful search costs $O(1+\alpha)$ where $\alpha=\frac{n}{m}$ [loading factor] if $n=O(m)$, then this is $O(1)$.
successful search: If $h(k)=j$
now $E\left[n_{j}\right]=E\left[\sum_{i=1}^{n} x_{i j}\right]=\sum_{i=1}^{n} E\left[x_{i j}\right]=1+\sum_{k_{\text {ep }}(i) \neq k} \frac{1}{m}$

$$
=1+\frac{n-1}{m}<1+\alpha \quad \text { (one key is } k \text {) }
$$

So a successful search take $O(1+1+\alpha)=O(1+\alpha)$ time

Note: The successful search does not need to go through the entire list, but only until it locates K. The book assumes that every element is equally likely to be the one searched for and finds $1+\frac{n-1}{2 m}$ instead of $1+\frac{n-1}{m}$. Which can be heuristically explained as going through half of the other keys in the list before finding k.

Relaxing the Simple Uniform Hashing condition.
weaker condition: (Called Universal Hashing)

$$
\forall k, l: P(h(k)=h(l)) \leqslant \frac{1}{m}
$$

To redo the analysis:
$P\left(x_{i j}=1\right)=$? (don't know without specific context) and knowing that $h(k)=j$:

$$
P\left(x_{i j}=1\right)= \begin{cases}P\left(h(k)=h\left(\operatorname{keg}_{\mathrm{g}}(i) \leqslant \frac{1}{m}\right.\right. & \operatorname{keg}(i) \neq k \\ 1 & \operatorname{key}(i)=k\end{cases}
$$

So same bounds can be derived.
[we will see a method to guarantee this condition]

Practical Hash functions
Division method: $h(k)=k \bmod u m$ [remainder in div. by m]
Deficiency: If m has a divisor d, then keys congruent modulo d utilize only $\frac{d}{m}$ slots.
So choose m prime?

$$
\begin{array}{ll}
E X: & 21 \equiv 0 \\
\begin{cases}E=21 & 28 \equiv 7 \\
d=7 & 35 \equiv 14 \\
& 42 \equiv 0\end{cases}
\end{array}
$$

Another: If strings are numbers in base 2^{p}, ! then if $m=2^{p}-1$, any permutation of the characters result in the same haoh e.g: "shad" and $m=127$

Typical solution:
Ascii: $\frac{115 \times 128^{3}}{s}+\frac{97}{a} \times 128^{2}+\frac{97}{a} \times 128+\frac{100}{d}(\bmod 127)$ $=28$
choose m prime not close to a power of 2

Multiplication method:

$$
\begin{array}{ll}
& h(k)=L m(k A-L k A J)\rfloor \quad \\
\text { Ex: } & A=\frac{\sqrt{5}-1}{2}=0.618 \text { (golden ratio) }
\end{array}
$$

Implementation using w-bit word computer

- let $m=2^{r}$ and $2^{w-1}<A^{\prime}<2^{w}$
- Consider $\frac{k A^{\prime}}{2^{w}} \quad\left(A=\frac{A^{\prime}}{2^{w}}\right)$
 $\left\{\begin{array}{l}\text { see an example } \\ \text { in book } \\ \text { end of Sec } 11.3 .2\end{array}\right.$
 A^{\prime}
$2 w$ bits

Universal Hushing
Consider \mathcal{H} a finite set of hash functions. It's called universal iff:

$$
\forall k_{1} l \cdot|\{h \in \mathcal{H}: h(k)=h(l)\}| \leqslant \frac{|\mathcal{H}|}{m}
$$

we pick h uniformly at random from \mathcal{H}.
How to construct \mathcal{H} ? Many methods exist. We will look at one that is easy to analyze. (the book presents a different one)

Assume key has r parts (treated as integers)

$$
k=\left\langle k_{0}, k_{1}, \ldots, k_{r-1}\right\rangle \quad 0 \leqslant k_{i}<m
$$

and m is prime.
Pick $a=\left\langle a_{0}, a_{1}, \ldots, a_{r_{-1}}\right\rangle$ where each a_{i} is chosen uniformly at random from $\{0,1, \ldots, m-1\}$
Then let:

$$
h_{a}(k)=\sum_{i=0}^{r-1} a_{i} k_{i}(\bmod m) \quad|\mathcal{H}|=m^{r}
$$

Given $x \neq y$:

$$
h(x)=h(y) \Rightarrow \sum a_{i} x_{i} \equiv \sum a_{i} y_{i}(\bmod m)
$$

Assume $x_{0}>y_{0}$, then

$$
a_{0}\left(x_{0}-y_{0}\right) \equiv \sum_{i=1}^{r-1} a_{i} y_{i}-\sum_{i=1}^{r-1} a_{i} x_{i}(\bmod m)
$$

Number theory: m prime \Rightarrow any integer $0<z<m$ has a multiplicative in verse $z Z^{-1} \equiv 1((\bmod m)$

So we can solve for a_{0}. [multiply both sides by $\left.\left(x_{0}-y_{0}\right)^{-1}\right]$

$$
\begin{aligned}
& \sum_{i=0}^{r-1} a_{i} x_{i} \equiv \sum_{i=0}^{r-1} a_{i} y_{i} \quad(\bmod m) \\
& \frac{a_{0} x_{0}}{\underline{r-1}}+\sum_{i=1}^{r-1} a_{i} x_{i} \equiv a_{0} y_{0}+\sum_{i=1}^{r-1} a_{i} y_{i} \quad(\bmod m) \\
& a_{0}\left(x_{0}-y_{0}\right) \equiv \sum_{i=1}^{r-1} a_{i} y_{i}-\sum_{i=1}^{r-1} a_{i} y_{i} \quad(\bmod m) \\
& a_{0} \equiv\left(\sum_{i=1}^{r-1} a_{i} y_{i}-\sum_{i=1}^{r-1} a_{i} y_{i}\right)\left(x_{0}-y_{0}\right)^{-1}(\bmod m)
\end{aligned}
$$

Example: Multiplicative inverses when $m=7$

$$
\begin{array}{lllllll}
z & 1 & 2 & 3 & 4 & 5 & 6 \\
z^{-1} & 1 & 4 & 5 & 2 & 3 & 6
\end{array} \quad z z^{-1} \equiv 1(\bmod 7)
$$

For every $\left\langle a_{1}, a_{2}, \ldots, a_{r-1}\right\rangle$ there is only one a_{0} that mates $h(x)=h(y)$. So there are m^{r-1} functions out of m^{r} functions that make $h(x)=h(y)$. Therefore

$$
\forall x, y,|\{h \in \mathcal{H}: \quad h(x)=h(y)\}|=m^{r-1}=\frac{m^{r}}{m}=\frac{|\mathcal{X}|}{m}
$$

