
BinarySearch Tree

Dynamic set operations such as insect , delete , search
and more can be done in O(h) time , whereI
is height of tree.

rooth]->0 each node a has :

d key [x]
/

mindb I left [x]

right[x]
New Nic Yi

p[x]
p[root[TT] = NIL









BST-Sort (1, n)
for i I to n

do x node such that key [x] = A [i]
Tree -Insect (T, x)

Inorder - Tree - Walk (root[T))

What can we say about this algorithm ?
- O(n2 (mainly due to inserts when tree is bad

,
h= 0(n)]

-

- (nlogn) [It's comparison based]

- It's O(nlogn) on average / Similar to Quicksort.

: BST-sort and a table partition Quicksort with first↓
-

element as pivot , make exactly the same comparisons
(but in different order)







So what did we conclude ?

· A randomly built BST has expected som of depths

equal to O(nlogu) , so expected average depth is OClogn)
-

·
This does not mean expected height is O(logn),
height is the maximum depth.
-

Example: 6 n = 2n+ - 1 + l hwO(logn)
God
6do Height= h + l

l= 0 (n)
som of depth- (n + e2), average depth = 0 (h+2)·

Choose CEVn => average depth is t (h) = (logn)
Height is O (v)










