
Red -black trees &

skip lists
#

Reid : Binary search tree with color /node
which is either red or black

Assume a root [T] is the root
Nil [T] is a single Sentinel for all leaves

p[root ft) = Nil CT]

Red -Black tree propertiesroot CT] O
mmol↳ D Root is black

1 I 2) Nie CT] is black

niet! O 3) The children of red node are black
to 10610 4) All paths from a node x to

µ µ Nie contain same number

of black nodes .

Definition : the black height of a node x
, bhcxd , is the

number of black nodes on a path from n to Nie Ct] ,

not counting a itself .

root ft] 0 the 2 h=4

ha I bh= IO/\Obh=2 h=3

bhai / INiffy! ① bh= I h=2

to f to } bhai he I
bh= '

µ I bh=o
So what's good about red - black tree ? The height of tree

is 0(log n) where he # internal nodes (not Nie CTI)

claims bhfa) z hee) 12 . [Property 3] the nodes on

the path are red . So z hz are black .

daThe subtree rooted at se has at least 2b""
-
l internal nodes .

proof by induction :
Basecas-e.tk is Nie ET] , then bhcx) - o

and 20 - 1=0 is the number of internal nodes in x's subtree

ttp : Consider left fog and right In] . Each has

black height at least bhfnj - I .. By inductive hypothesis,
x 's subtree has at least I + 2.(2bHH) - '- t) internal nodes

which is a
bh
- I

.

Finally , the two claims show that had s 2b hee) S2 ly (natl)
where n£ # internal nodes in X 's subtree

.

Operations on Red -black tree :

-

All operation that don't modify the tree run as before
in 0 (log n) time .

Minimum
Maximums
successor

Predecessor

search

Problems to take care of : Insert & Delete .

⑦
thank

⑦
£40 Insert 8 £40

¥:÷÷÷÷÷÷⇒⇐i: ¥:÷÷÷:÷÷÷÷÷÷÷÷:*
⑦ OF⑦ "⑦ Insert 5 ⑦
" m⇒**÷° " ¥

mo .o no. b. can't
no . recolor !

tho

Rotations
-

⑦ let:i¥¥÷z's §,
②

oL '② ¥##" II1) Right- Rotate CT, x) x fp 8

• Rotations can be done in Oct) by temple update
of pointers .

• Do not affect the Binary Search Tree property .

Left -foetal:*'T:} ⇐mean Gutmanright ← left ly] (move p to x)
if kftfy] # Nie
then p [left ← se (update parent of

pay] ← pod (update parent of y)
if Pfd = pie ET] (make y root)
then rootft] ← y

else if a- left[pad]
then leftCp [xD ← y
else right [pad]← y

left [y]←n (put x on y's left)
pay ← y

How to Insert CT, z)
-

• Newly inserted node 2- is Red . This will break

properties if
i) Z is root

2) PED is Red .

• Insert as usual , then call insert -fixup Cz)

Three Cases
-

z
fat Now this is Z

§¥y "uncle
"

m T
"
"de

"

¥, "Equipped recursively

÷:
""i:iii÷÷÷O¥÷÷.is#:::......3

Case 3
- O

Recolor %

qq.iq?o'
"""

"

m⇒⇒*

.

"⇒⇒ o o
z 11 toa a p r

right uncle A

Right- Rotate CT, p[PED) 8q••

Case I propagates up the tree ⇒ 0dg n) time .

Case 2 and case 3 are terminal ⇒ OCD rotations .

Deletion , more complicated but can be handled similarly .

Insert - fixup (z)
D color of 2- is Red
white color [PEED = Red
do if PAT = left Cp [PEED]
then y ← right [p [PEED a right uncle

if color [y] = Red
then case I D recolor & 2-← p[PEED

else if 2-a right [p ft] a case 2

then 2- ← p ft]

Left-Rotate G)

a case 3

color fp AT] ← Black

color [p[PEED ← Red

Right- Rotate (p [PEED)
else (symmetric)

color [root CT]]← Black

Skiphist n
.

Sorted doubly linked list with
levels that skip . (see below)

↳T#⇒
T T

↳TITHE#€
i: I e

La III III
t t t t

L , he#7eftIF①#¥t⇒

•
Min

,
Max
, Successor , Predecessor can be done in OC) time

(Assume we also have a pointer to the end for Max)

• Delete OG) given what to delete

• Insert mi OG) t search time .

How to search ? start with highest level .

• In level i , find j such that

NE [Lili) , Lilith]
• If u is Li Cj) or Li (ja) , then done

.

•
Otherwise follow pointer from hi (j) to level ;- a .

• If not found in Level 1
,
then it's not there

Searching for 12
↳ II#I

II-TCga-aii¥÷±⇒÷±÷÷÷÷÷÷÷
II II II II II D D

searching for 35
↳ II

Iii¥÷÷⇒÷±÷÷÷÷÷÷
II II II II II D D

How to make search Oclogn) time niotead of OG) time ?

Let's look at case of two levels

↳ II-II-II-1J

↳ TITI-TITI-TI-IHI
Assume elements in Lz are uniformly distributed
Then Search time is

that + Hen
1h21

Approximately ,
this is minimized when 44=1,44,

so 44 -- Tn and search time I 2 Tn = 2h42

•
In general, for r levels

,
the search will take

approximately rn
"r
time .

•
What if we choose re Ig n , then

lgn.nl/gln
but n Kgw = 2 ,

so we have

a align time .

• since 'Fatt ¥,
t - - - + YET' +14=2lgn

Kil
and r= Ign , the ratio

, ya
2

Next level has a { the elements .

I#I
I I
a-I#
I l T

.

11-7=17-17*7
I l l l I
17*7*7*7=17*1*77*7

But how do we maintain this with insertions

& deletions ?

Deletion : Easy , when deleting an element , delete
tall the way .

Insertion Don 't insist on
"
ideal " structure .

When inserting an element n ,
-
with prob . p

"

promote
" it to the next level

- repeat , until n is not promoted .

¥9 -p
e.g . choose petµ

-
9 p
µ

⇐
Sp

F- # levels

Xi = # times ith dean was promoted .

r= It 17,9
.

I Xi =

i?%x felt Xi]

÷t
-

yay!:b
-11- it clean

.

ith element

let 2- =¥m¥xi
Show : P (Z *t) f npt

PLZ >t) f PC t) t P t) t . . . + PCx⇒

P (E , or Ea) f PCE ,) t PCE)

Z > t ⇐ (x# or His E) or .
. . . Cxnzt)

P (zzt) = P (Xist or last or .
.
. . xnzt)

af Phat) t P t) t . . - + pan > t)
pt pt pt

Analysis : let Xi = # times we promote ith dean .

P (sina.sn Xi > t) s npcxi > t) [union bound]✓ -

P(Xia k) = PKG - p) k Zo

so Pcxizt) = f- (ptt ptt 't . - -1=4-p)t=pt
let rt align and f- I

PCF.ee?nXi7dlgn) s ÷ = ÷,

So with high prob . r= 0 Clg n)

But how much do we search in each level ?

-II.- tf-
Iza-Etta-l l l l
← K→

P (Y- K) = C-p)
K- '

p⇒ .
So Y is a geometric

random Variable with OCD Expectation .

ELY] = Kp

