Red-black trees \&
skip Lists
Red-black Tree: Binary Search tree with color/node which is either red or black

Assume: $\operatorname{root}[T]$ is the root
$\mathrm{Ni} l[T]$ is a single sentinal for all leaves $P[\operatorname{root}[T]]=\operatorname{Nil}[T]$

Red-Black tree properties

1) Root is black
2) $\mathrm{Nil}[T]$ is black
3) The children of red node are black
4) All paths from a node x to Nil [T] contain same number of black nodes.

Definition: The black height of a node $x, b h(x)$, is the number of black nodes on a path from x to Nil $[T]$, not counting x itself.

So what's good about red-black tree? The height of tree is $O(\log n)$ where $n=$ \#iternal nodes (not Nie $[T]$)
claim1: $b h(x) \geqslant h(x) / 2$. [Property 3] $\leqslant \frac{h}{2}$ nodes on the path are red. So $\geqslant \frac{h}{2}$ are black.
clain 2: The subtree rooted at x has at least $2^{b h(x)}-1$ internal nodes. proof by induction:

Base case. x is Nil $[\dot{T}]$, then $\operatorname{bh}(x)=0$
and $2^{\circ}-1=0$ is the number of internal nodes in $x^{\prime} s$ subtree
Inductive step: Consider left $[x]$ and right $[x]$. Each hat black height at least $b h(x)-1$. By inductive hypotheris, x^{\prime} s subtree has at least $1+2\left(2^{b h(x)}-1\right)$ internal nodes which is $2^{b h(x)}-1$.

Finally, the tro clains show that $h(x) \leqslant 2 h h(x) \leqslant 2 \lg (n+1)$ where $n_{x}=$ \#iternal nodes in x^{\prime} 's subtree.

Operations on Red-black tree:
All operation that don't modify the tree run as before is $O(\log n)$ time.

Minimum
Maximum
Successor
Predecessor
Search
Problems to take care of: Insert \& Delete.

Rotations

- Rotations can be done in $O(1)$ by tangle update of pointers.
- Do not affect the Binary Search Tree Property.

Left-Rotate (T, x)

$$
\begin{aligned}
& y \leftarrow \operatorname{right}[x] \quad(\neq \text { Nil }[T]) \\
& \text { right }[x]<\operatorname{left}[y] \quad(\text { move } \beta \text { to } x) \\
& \text { if left }[y] \neq \text { vie }[T]
\end{aligned}
$$

then $p[k f t[y]] \leftarrow x$ (update parent of f)
$P[y] \leftarrow p[x] \quad$ (update parent of y)
if $P[x]=\operatorname{vil}[T] \quad$ (make y root)
then $\operatorname{root}[T] \leftarrow y$
else if $x=\operatorname{keft}[p[x]]$
then $\operatorname{left}[p[x]] \leftarrow y$
else right $[\rho[x]] \leftarrow y$
left $[y] \leftarrow x$
$P[x] \leftarrow y$
(put x on y^{\prime} s left)

How to Insert (T, z)

- Newly inserted node z is Red. This will break k properties if

1) z is root
2) $P[z]$ is Red.

- Insert as usual, then call Insert-fixup (z)

Three Cases

Case 1

Case 2

Case 3

Case 1 propagates op the tree $\Rightarrow O(\lg n)$ time.
Case 2 and case 3 are terminal $\Rightarrow O$ (1) rotations.
Deletion, more complicated but can be handled similarly.

```
INsert-Fixup (z)
    D color of }z\mathrm{ is Red
    while color }[p[z]]=\mathrm{ Red
        do if }p[z]=\operatorname{left}[p[p[z]]
            then }y\leftarrow\operatorname{right [p[p[z]] Dright uncle
            if color [y] = Red
                then Case 1 Dreolor & }Z\leftarrowP[P[z]
            else if z}=\operatorname{right [p[z]] }\Delta\mathrm{ Case 2
                then }z\inp[z
            Left-Rotate (z)
                \triangleCase 3
                color [p[z]]}\leftarrow Black
                color [P[P[z]]}\leftarrow\operatorname{Red
                Right-Rotate (P[P[z]])
        else (Aymmetric)
    color [\operatorname{voot}[T]]}<\mathrm{ Black
```

Skip list: Sorted doubly linked list with levels that skip. (see below)

- Min, Max, Successor, Predecessor can be done in $O(1)$ time (Assume we also have a pointer to the end for Max)
- Delete $O(1)$ given what to delete
- Insert is $O(1)+$ Search time.

How to search? Start with highest level.

- In level i, find j such that

$$
x \in\left[L_{i}(j), L_{i}(j+1)\right]
$$

- If x is $L_{i}(j)$ or $L_{i}(j+1)$, then done.
- Otherwise follow pointer from $L i(j)$ to level i_{i-1}
- If not found in level 1, then it's not there

Searching for 35

How to make search $O(\log n)$ time wiotead of $O(n)$ time?
Let's look at case of two levels

Assume elements in L_{2} are uniformly distributed then Search time is

$$
\left|L_{2}\right|+\frac{\left|L_{1}\right|}{\left|L_{2}\right|}=n
$$

Approximately, this is minimized when $\left|L_{2}\right|=\frac{\left|L_{1}\right|}{\left|L_{2}\right|}$
So $\left|L_{2}\right|=\sqrt{n}$ and Search time $\approx 2 \sqrt{n}=2 n^{1 / 2}$

- In general, for r levels, the search mil bake approximately $r n^{1 / r}$ time.
- What if we choose $r \approx \lg n$, then

$$
\lg n \cdot n^{1 / \lg n}
$$

but $n^{1 / \operatorname{lgn}}=2$, so we have $\approx 2 \lg n$ time.

- Since $\frac{\left|L_{1}\right|}{\left|L_{2}\right|}+\frac{\left|L_{2}\right|}{\left|L_{1}\right|}+\cdots+\frac{\left|L_{r_{1}}\right|}{\left|L_{r}\right|}+\left|L_{r}\right|=2 \lg n$ and $r=\lg n$, the ratio $\frac{\left|L_{i}\right|}{\left|L_{i+1}\right|} \approx 2$
Next level has $\approx \frac{1}{2}$ the elements.

But how do we maintain this with insertions \& deletions?

Deletion: Easy, when deleting an element, delete it all the way.

Insertion: Don't insist on "ideal" structure. When inserting an clement x,

- with prob. p "promote" it to the next level
- repeat, until x is not promoted.

egg. Chose $p \approx \frac{1}{2}$

$$
r=\# \text { levels }
$$

$x_{i}=$ \# times $i^{\text {th }}$ elem n was promoted.

$$
r=1+\max _{i=1 \ldots n} x_{i}=\max _{i=1 \ldots n}\left[1+x_{i}\right]
$$

$\operatorname{let} Z=\max _{i=\ldots n} x_{i}$
Show: $P\left({ }^{\prime \prime} Z \geqslant t\right) \leqslant n p^{t}$

$$
\begin{gathered}
P(Z \geqslant t) \leqslant P\left(x_{1} \geqslant t\right)+P\left(x_{2} \geqslant t\right)+\cdots+P\left(x_{n} \geqslant t\right) \\
P\left(E_{1} \text { or } E_{2}\right) \leqslant P\left(E_{1}\right)+P\left(E_{2}\right) \\
Z \geqslant t \Leftrightarrow\left(x_{1} \geqslant t\right) \text { or }\left(x_{2} \geqslant t\right) \text { OR } \ldots\left(x_{n} \geqslant t\right) \\
P(Z \geqslant t)=P\left(x_{1} \geqslant t \text { OR } x_{2} \geqslant t \quad \text { OR } \cdots x_{n} \geqslant t\right) \\
\leqslant \frac{P\left(x_{1} \geqslant t\right)}{p t}+P\left(x_{2} \geqslant t\right)+\cdots+P\left(x_{1} \geqslant t\right) \\
p t
\end{gathered}
$$

Analysis: let $x_{i}=\#$ times we promote its elcun.

$$
\begin{gathered}
P\left(\max _{i=1 . n} x_{i} \geqslant t\right) \leqslant n P\left(x_{i} \geqslant t\right) \quad \text { [union bound] } \\
P\left(x_{i}=k\right)=p^{k}(1-p) \quad k \geqslant 0
\end{gathered}
$$

So $p\left(x_{i} \geqslant t\right)=(1-p)\left(p^{t}+p^{t+1}+\cdots\right)=(1-p) \frac{p^{t}}{1-p}=p^{t}$ let $t=\alpha \lg n$ and $p=\frac{1}{2}$

$$
P\left(\max _{i=1 . . n} x_{i} \geqslant \alpha \lg n\right) \leqslant \frac{n}{n^{\alpha}}=\frac{1}{n^{\alpha-1}}
$$

So with high prob. $\quad r=O(\lg n)$

But how much do we search in each level?

$P(Y=k)=(1-p)^{k-1} p(k \geqslant 1)$. So Y is a geometric random variable with O (1) expectation.

$$
E[Y]=1 / p
$$

