
Augmenting Red -black trees
-

Suppose we want to add the following two operations
select (n, i) : returns node with ith smallest key in x's subtree

rank (T, n) : returns rank of x in the inorder traversal of T .

1DEA Augment each node x with size [n]

size = # internal nodes in x's subtree (including x)
size (NIL (TT] = O

/\ Note :

-

g y
sizefxI-sizefleftf.ae]] + size [right + I

!
size [left his]t1= rank of Xindo af! it's subtree

A. the
select Cmi)

ACDFH r← size Ileftfa]] +1

if i - r
then return X

else if isr
then return select (lefter], i)
else return select frighten], i - r)

Rank (T, n)
r← size I left In]] + 1 FE rank of X in it 's subtree

y ← a

while y # root IT]
do if y = right [p [y]] y is a right child

then r ← rt size [left [ply])] t 1

y ← p [y]

return r
p O Opcx]
l l

r= size[left [xD -11
" 0 On
11 A

r = rank of X in X's subtree
tank of X in y 's subtree

is also rank of x in PGD 's subtree = rt rank of pH]

Examp

F- 3

\ ACDFHMPQ

r=rt2=3 1^3
÷ lol!!r=

.

do i
" A

se

riff tho

Augmenting Red - black trees in general
-

Let f be a field that augments a Red -black tree .

Suppose f-Ex] can be computed using only the information in
- x itself
- Left [n]
- right [x]

including f- [left Ed] and FC right [xD

Then one can maintain f in all nodes during insertion & deletion
without affecting the o (log n) asymptotic performance .

Proofi
- changing f- Ex] only affects the field in nodes on the

path from root CT] to x (o (login) computations)

-
Rotations require local changes only .

"

O Rotates
I

/ ' Etat
%

y O E E O-
l lE 's A A

x p p r

Only two nodes require changes in a rotation
,
and we have

a Euston number of rotations per operation .

Application a. Interval trees
-

-
Maintain a dynamic set of intervals

- Support operation : Find an interval in the set

that overlaps a given query interval.

Example :
7 10
1- low 1-high

17 19
51-if I-1

1-I 1-1 1--1
4 8 15 18 4 23

Quercy is 18
1-1

[14,16] → Its, 18] 141-1 16

[16,19] → [15,183 or [17, 19]

[1414]→ Nil ft]

- Red
-black tree with key Ex] = low [int [xD

So the binary search tree is sorted one the low end points of
intervals

high [int [xD
- Augment with Max fee] = Max { max [left] AT]= O

Max [right
'
Max [Nil

23

\
BST on

is maximum of all in subtree
1 A

8 18

A 1 to

do

Interval - Search (T, i) ¥, i is intreval

N← root [T]

while n# NIL ET] and in int fix] = ¢ (no overlap)
do if left [a] F NIL ET) and Max [left [xD z low [i]

then x ← left Ex]
else x ← rightCx]

return X prove every move is safe
f-

Case 1 : Go right . Case 2 : Go left .

If no overlap in Left subtree

left = NICE] or low fi] f max[left [xD = high [it

''Y' / torso:÷: " .÷oEeany int . in left
But BST⇒ high [i] s any
low in right subtree

so there is no overlap in left .

So no overlap in right either .

