Augmenting Red-black trees
Suppose we want to add the following two operations
Select $(x, i)$ : returns node with th smallest Key in $x^{\prime}$ s subtrce
$\operatorname{rank}(T, x)$ : returns rank of $x$ in the inorder traversal of $T$.
IDEA: Augment each node $x$ with size $[x]$
Size $[x]=$ \#internal nodes in $x^{\prime}$ s subtrice (including $x$ )
$\operatorname{size}[\operatorname{NL}[T]]=0$


Note:

$$
\operatorname{size}[x]=\operatorname{size}[\operatorname{lef}[x]]+\operatorname{size}[\operatorname{right}[x]]+1
$$

$\operatorname{size}[\operatorname{left}[x]]+1=\operatorname{rank}$ of $x$ in it's sultree

Select $(x, i)$

$$
A C D F H
$$

$$
\begin{aligned}
& r \longleftarrow \operatorname{size}[\operatorname{left}[x]]+1 \\
& \text { if } i=r
\end{aligned}
$$

then return $x$
else if $i<r$
then return $\operatorname{Select}(\operatorname{left}[x], i)$ else return Socket (right $[x], i-r$ )
$\operatorname{Rank}(T, x)$
$r \leftarrow$ size $[\operatorname{left}[x]]+1$ rank of $x$ in it's subtree $y \leftarrow x$
while $y \neq \operatorname{root}[T]$
do if $y=\operatorname{right}[p[y]] y$ is a right child
then $r \leftarrow r+\operatorname{size}[\operatorname{Ceft}[p[y]]]+1$

$$
y \leftarrow p[y]
$$

return $r$

$r=$ rank of $x$ in $x^{\prime}$ s subtree is also rank of $x$ in $P[x]^{\prime}$ s subtree

rank of $x$ in $y^{\prime}$ s subtrce $=r+\operatorname{ranh}$ of $p[x]$

Example:


Augmenting Red-black trees in general
Let $f$ be a field that augments a Red-black tree.
Suppose $f[x]$ can be computed using only the information in

- $x$ itself
- Left $[x]$
$-\operatorname{right}[x]$
including $f[\operatorname{reft}[x]]$ and $f[\operatorname{right}[x]]$

Then one can maintain $f$ in all nodes during insertion \& deletion without affecting the $O(\log n)$ asymptotic Performance.

Proof:

- Changing $f[x]$ only affects the field in nodes on the path from root $[T]$ to $x$ ( $O(\log n)$ computations)
- Rotations require local changes only.


Only two nodes require changes in a rotation, and we have a constant number of rotations per operation.

Application: Interval trees

- Maintain a dynamic set of intervals
- Support operation: Find an interval in the set that overlaps a given query interval.
Example:


Query:

$$
\begin{aligned}
& {[14,16] \longrightarrow[15,18]} \\
& {[16,19] \longrightarrow[15,18] \text { or }[17,19]} \\
& {[12,14] \longrightarrow \text { NiL }[T]}
\end{aligned}
$$

$$
1
$$

- Red-black tree with Key $[x]=\operatorname{low}[\operatorname{int}[x]]$

So the binary search tree is sorted on the low end points of intervals

- Augment with max $[x]=\max \left\{\begin{array}{l}\operatorname{high}[\operatorname{int}[x]] \\ \max [\operatorname{left}[x]] \\ \max [\operatorname{right}[x]]\end{array}, \max [\operatorname{NiL}[T]]=0\right.$
 Bs onis maximum of all in subtree

Interval -Search $(T, i)$ is intreval

$$
x \leftarrow \operatorname{root}[\mathrm{~T}]
$$

while $x \neq$ NIL $[T]$ and $i n \operatorname{int}[x]=\phi$ (no overlap) do if left $[x] \neq \operatorname{NiL}[T]$ and $\max [\operatorname{left}[x]] \geqslant$ low $[i]$
then $x \leftarrow \operatorname{left}[x]$
else $x \in \operatorname{right}[x]$
return $x$

Case 1: Go right.

$$
\begin{aligned}
& \operatorname{left}[x]=N / C[T] \text { or } \\
& \max [\operatorname{left}[x]]<\operatorname{low}[i] \\
& \text { any int in left }
\end{aligned}
$$

So there is no over ap in left.

Case 2: Go left.
If no overlap in Left subtree

$$
\operatorname{low}[i] \leqslant \max [\operatorname{left}[x]]=\operatorname{ligh}\left[i^{\prime}\right]
$$

for some $i^{\prime}$ in left subtree


But $B S T \Rightarrow \operatorname{lngh}[i]$ < any low in right subtree
So no overlap in right either.

