
Dynamic Programming
#

- Dynamic Programming is an algorithmic technique

- It Is somewhat related to divide-and -conquer and greedy alg .

-
In divide - and- conquer, each subproblem occurs only once , so
solution can be efficient using recursion -

-

In greedy alg . (will see later) the subproblems are determined
by taking a step that is also part of the overall sedation -

e.g . Making optimal change using { lol , 54, 104,254}

-
So we use dynamic Programming when a divide

-

and
- conquer

approach would cause repeated solution of the same subproblem,
and no locally optimal step is possible that leads to
globally optimal solution .



We will go over the ideas in D. P by considering specific
examples :

Longest Common Subsequence LCS .

-

Given two strings X [ i . - m] , y [ I . - n] , find a longest
sequence that is common to both

X : A B C B D A B
BCBA is contained

g : B D C A B A in both and is LCS .

Applications :
. Computational Biology . DNA

,
RNA

,
or protein

-

sequences, identify similarities.

• Unix command
"

diff " compares lines of files .



To appreciate an efficient solution to this problem , consider
a Brute-force approach .

For every subsequence of X, check if it's a subsequence of y

W¥e#meFlmah.

There are 2M

subsequences of x to checkj each take 0(n) time

( scan y for first element, scan from there for next element , . . .)
so running time is fc2.mn) if m> n, we can optimize\ by exchanging the roles of x andg)
narrow :

:p::::;.
':3:::*.es. €757



• Define Cfi,j ] = length of Lcs of n[ lui ] and y[ i.j]
• Then c[ min] = length of LCS of X and y

•
Claim :

cgi,jy= { Cli-bi -Dt l if xCi3=y[j] ( case ,)

max ( cc j -D , c[ i - I,j ]) otherwise

Proof of case I : Let za . . K] be LCS of XG . -
i] and ya . - j ] , c[i,jJ=k .

-

We have 3 scenarios :

xd] Hit xd] Hit xd] His
•-0 Too ago

2-[ l . . K- I] zqay
2- [In . K- i] zqay ZG - - K- I] ZEKI

•TO •to •--•e0

ya] ysj ] ya] ysj ] ya] ysj ]

otherwise Zank] can be extended by making them]=xCi3=y[j ]



In all cases Z G . . K- D is CS of x El . . i - D and ya . - j - B

we can show that 2- El . . K-D is LCS of XG . .
i-D and ya . -j -D

Proof [ Cut- and - paste argument ]

Suppose not , then F w [ I . . K ' ] that is LCS of above and

K
'

> K- I .

Cutt paste w .

We can then extend w by w[KID⇒G-f-y Ej] .

obtaining a CS of xG . . it and y G . .j] of length > k,
a contradiction

.
This proves a [i- I,j-D - K- I .

then cfiij ] -- c [ it , j -Dtl



Equivalent formulation :

fecit, j-it wcisj )
cfisj] = Max c Ei ,j- i ] - 8\ c [ it , j ] - 8
Clk

, o] = Cfo , k ] = - K 8 ( kzo)

where wfiij) = { '
'' GT - TEJ]

,
and 8=0 for Los

- ooo otherwise .

But one can generalize the scoring scheme to obtain

"similar " subsequences (Not exact matches) where gaps are

penalized by 8 .



Dynamic Programming : Hallmark #I
#

Optimal Substructure : An optimal solution to a problem , contains
-

optimal solutions to subproblems .

Here
, c [ i,j] is expressed in terms of Cfi- I,j -D, Cci ,j -D , and di-bj]

Optimal Substructure ⇒ Recursive solution .

Lcs (x,y , i , j)
if i=o or j - o
then return o

'TE base case

return max ( Lcs Cit, j -Ht slings,
Lcsciij- it ,
Lcs (it , j ))



Recursive tree : ( m=3
,
n= 4)

3,4

✓ I \
2,3 44 3,3

"
t!!!!! !!!

-

1h MM
,
!!Taz
A.HAY

Depth of any leaf z m (assuming men)
Branches by 3 at each node , so amountof work r(3M)



Dynamic Programming : Hallmark #2
-

Overlapping subproblems-
-
There are only few subproblems, here Cmn) .

- Many recurring instances of each
[unlike Divide-and - Conquer where problems are independent ]

Solution : Memorization .

After computing solution to subproblem
store it in

''

table " to avoid redoing work .



an

:c:&.÷i:*" fiefif I- o or j= o
then return o

if Csi,j ] = NIL

then cc;D ← max ( , s )
return csisj]

else return Cci,j]



In practice , we use a bottom up approach -
-

start with small sub problems and work toward larger.
I→

if
-

client -D ca, ;]
Time Alma)

÷: / Est space ocmn ,

" " t"

compute table row by row



↳ A B C B D A B
#

O←o←O←O←0←O←O←O

it B of←BY#Ex# ← a Ep÷÷÷:÷¥¥:A 09*9 £12212293373
9 a q 99 95

B q I 24-22 33+33<-33 44

A 099 EEE 53<-35944144 AHAH -4

Actual LSC are obtained by
"

backtracking
"

-

,
Which is

a typical aspect of Dynamic Programming .



Optimal BST
-

• Assume kicks L . . . L kn are keys with access

prob . Pi ,
is l . . n

• Construct a BST that minimizes

[ It dcki) ) Pi

where dcki) is the depth of Ki .

[ simplification of book version] : all searches are always
n

for { Ki , K2 , - - - j kn } .
So Epi - I .
it



Optimal Substructure :
-

Let cciij] be the expected cost of an optimal tree

containing { Ki , Kirti , - - - , Kj }

If Kr ( is rsj ) is root of such tree , then

c.[ i. j ] = c Ci , r-it Pet Prt Gressitt Pe

demeanour..:T
"

omIEIIIn.
is It its •g argument

-
depth in subtree ✓
so add Pe to cost .



Construct recursive solution :

Cci, j] = I
° j - i - I Empty)

\ imaging,
c [ iir-D t cfrthj ] + wCi, j ) otherwise

where wciijj = p
f- l

If we use Memorization
,
and assenaingallwcisj-availab.IE,

each cci,j] requires acry time to compute, for a total

of A Cup) .

Note : wliij) can be computed in 0 Cns) time trivially , but

using DP , it can be done in D- (n2) time .

W list = { o j s i

wCi
, j-I + Pj otherwise



What does the table for Cci,j] look like ?

j →

" t
← cost - oh , n]

C [ 2,5] Will check :

:c::*:c:c::.Not needed
cfr, 5ft 45,5]

Zero
-

c [2,4] t 46,5]

"Kkk
"

"Kkk
.

.yfµ
.

-

Actual tree obtained by standard D. P
. backtracking .


