Dynamic Programming

- Dynamic Programming is an algorithmic technique
- It's somewhat related to dvide-and-conquer and greedy alg.
- In divide-and-conques, each subproblean occurs only once, so solution can be efficient using recursion.
- In greedy alg. (will see later) the subproblems ave determined by taking a step that is also part of the overall solution.
e.g. Making optimal change using $\{1 \$, 5 \phi, 10 \$, 25 \phi\}$
- So we use dynamic Programming when a divide-and-conquer approach would cause repeated solution of the same subproblem, and no locally optimal step is possible that leads to globally optimal solution.

We will go over the ideas in D.P by Considering specific examples:

Longest Common Subsequence LCS.
Given two strings $x[1 \ldots m], y[1 \ldots n]$, find a longest sequence that is common to both

Applications: Computational Biology. DNA, RNA, or protein sequences, identify similarities.

- Unix command "diff" compares lines of files.

To appreciate an efficient solution to this problem, consider a Brute-force approach.
For every oubseguence of x, check if it's a subsequence of y What's the running time of this approach? There are 2^{m} subsequences of x to check; each take $\theta(n)$ time (scan for first element, scan from there for next element,...) So running time is $\theta\left(2^{m} n\right)\left[\begin{array}{l}\text { if } m>n \text {, we can optimize } \\ \text { by exchanging the roles of } x \text { and } y\end{array}\right]$

Approach: 1) focus on the length of LCS
2) Extend alg. to find LCS itself

- Define $c[i, j]=$ length of LCS of $x[\ldots i]$ and $y[1 \ldots j]$
- Then $C[m, n]=$ length of LCS of x and y
- Claim:

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j] \quad(\text { case }) \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

Proof of case 1: Let $z[1 \ldots k]$ be LCS of $x[1 \ldots i]$ and $y[1 \ldots j], c[i, j]=K$.
We have 3 scenarios:

$y[1] \quad y[j]$

$y[1] \quad y[j]$

$y[1] \quad y[j]$
otherwise $z[1, k]$ can be extended by making $z[k+1]=x[i]=y[j]$

In all cases $z[1 \ldots k-1]$ is $C S$ of $x[1 \ldots i-1]$ and $y[\ldots j-1]$ We can show that $z[1 \ldots k-1]$ is LCS of $x[1 \cdots i-1]$ and $y[\ldots j-1]$

Proof: [Cut-and-Paste argument]
Suppose not, then $\exists w\left[\ldots k^{\prime}\right]$ that is LCS of above and $k^{\prime}>k-1$. Cut z paste w.
We can then extend w by $w\left[k^{\prime}+1\right]=x[i]=y[j]$.
obtaining a CS of $x[\ldots i]$ and $y[1 \ldots j]$ of length $>k$, a contradiction. This proves $C[i-1, j-1]=k-1$.
then $c[i, j]=c[i-1, j-1]+1$

Equivalent formulation:

$$
\begin{aligned}
& c[i, j]=\max \left\{\begin{array}{l}
c[i-1, j-1]+w(i, j) \\
c[i, j-1]-\gamma \\
c[i-1, j]-\gamma
\end{array}\right. \\
& c[k, 0]=c[0, k]=-k \gamma \quad(k \geqslant 0)
\end{aligned}
$$

Where $x(i, j)=\left\{\begin{array}{ll}1 & x[i]=y[j] \\ -\infty & \text { otherwise. }\end{array}\right.$ and $\gamma=0$ for LCS
But one can generalize the scoring scheme to obtain "similar" subsequences (Not exact matches) whore gaps are penalized by γ.

Dynamic Programming: Hallmark \#1
Optimal Substructure: An optimal solution to a problem, contains optimal solutions to subproblems.

Here, $c[i, j]$ is expressed in terms of $c[i-1, j-1], c[i, j-1]$, and $c[i-1, j]$
Optimal SubStructure \Rightarrow Reansive Solution.
$\operatorname{LCs}(x, y, i, j)$
if $i=0$ or $j=0$
then return 0 base case
return $\max (\operatorname{LCS}(i-1, j-1)+5(i, j)$,

$$
\operatorname{LCS}(i, j-1))
$$

$$
\operatorname{LCS}(i-1, j))
$$

Recursive thee: $(m=3, n=4)$

Depth of any leaf $\geqslant m$ (assuming $m \leqslant n$)
Branches by 3 at each node, so amount of work $\Omega\left(3^{m}\right)$

Dynamic Programming: Hallmark \#2
Overlapping Subproblems

- There are only few subproblems, here $\theta(m n)$.
- Many recurring instances of each
[unlike Divide-and-Conguer where problems are independent]
Solution: Memorization.
After computing solution to subproblem store it in "table" to avoid redoing work.

Conceptual Implementation $\operatorname{LCS}(x, y, i, j)$
if $i=0$ or $j=0$ then return 0

$$
\text { if } c[i, j]=\text { NIL }
$$

then $c[i, j] \leftarrow \max (, \quad)$
return $\subset[i, j]$
else return $C[i, j]$

In practice, we use a bottom up approachstart with small sub problems and work toward langer.

$$
J \longrightarrow
$$

$$
\begin{aligned}
& i \downarrow \\
& i=0 \ldots m \\
& j=0 \ldots n
\end{aligned}
$$

Time $\theta(m n)$
Space $\theta(m n)$

Compute table row by row

Actual LSC me obtained by "backtracking", which is a typical aspect of Dynamic Programming.

Optimal BST

- Assume $k_{1}<k_{2}<\ldots<k_{n}$ are keys with access prob. $P_{i}, i=1 . . n$
- Construct a BST that minimizes

$$
\sum_{i=1}^{n}\left[1+d\left(k_{i}\right)\right] p_{i}
$$

where $d\left(k_{i}\right)$ is the depth of k_{i}.
[simplification of book version]: all searches are days for $\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$. So $\sum_{i=1}^{n} p_{i}=1$.

Optimal Substructure:
Let $c[i, j]$ be the expected cost of an optimal tree containing $\left\{k_{i}, k_{i+1}, \ldots, k_{j}\right\}$

If $k_{r} \quad(i \leqslant r \leqslant j)$ is root of such tree, then

$$
c[i, j]=c[i, r-1]+\sum_{l=i}^{r-1} p_{l}+p_{r}+c[r+1, j]+\sum_{l=r_{+1}}^{j} p_{l}
$$

 so add Pe to cost.

Construct reansive Solution:

$$
C[i, j]= \begin{cases}0 & j=i-1 \text { (Empty) } \\ \min _{i \leqslant r \leqslant j} c[i, r-1]+c[r+1, j]+w(i, j) & \text { otherwise }\end{cases}
$$

where $w(i, j)=\sum_{l=i}^{j} p_{l}$
If we use Memoization, and astsnaing all $w(i, j)$ available, each $c[i, j]$ requires $\theta(n)$ time to compute, for a total of $\theta\left(n^{3}\right)$.

Note $w(i, j)$ can be computed in $O\left(n^{3}\right)$ time trivially, but using $D P$, it can be done in $\theta\left(n^{2}\right)$ time.

$$
w(i, j)=\left\{\begin{array}{lc}
0 & j<i \\
w(i, j-1)+P_{j} & \text { otherwise }
\end{array}\right.
$$

What does the table for $C[i, j]$ look like?
 C[2,5] will check:

$$
\begin{aligned}
& c[2,1]+c[3,5] \\
& c[2,2]+c[4,5] \\
& c[2,3]+c[5,5] \\
& c[2,4]+c[6,5]
\end{aligned}
$$

Actual tree obtained by standard D.P. backtracking.

