Krusgal's alg. for MST and disjoint sets

Assume we have a data structure of disjoint sets

$$
\mathbb{S}=\left\{S_{i}\right\} \text { such that } S_{i} \cap S_{j}=\phi
$$

and supports the following operations.

$$
\begin{aligned}
& -\operatorname{Make}-\operatorname{Set}(x): \mathbb{S} \leftarrow \mathbb{S} \cup\{\{x\}\} \\
& -\operatorname{Union}(x, y): S \leftarrow S-\left\{S_{1}, S_{2}\right\} \cup\left\{S_{1} \cup S_{2}\right\}
\end{aligned}
$$

where $x \in S_{1}$ and $y \in S_{2}$.

- Find. Set (x) : returns a unique object that represents S where $x \in S$.
krusgal's alg. for MST.
$T \leftarrow \phi$
for each $v \in V$
do Make-Set (V)
sort E by increasing edge weight
for each $(u, v) \in E$ (in sorted order)
do if Find_Set $(u) \neq$ Find_Set $(v) \quad \Delta(u, v)$ make no cycle then $T \leftarrow T u\{(u, v)\}$ union ($u, v) \quad u_{\&} v$ now in same component

Why does it work? (previous proof)

Example:

Time:

- Sorting: $\theta(E \log E)=\theta(E \log V)$ since graph is connected $=O(E \log V)$ in general since $E=O\left(V^{2}\right)$
- $\theta(v)$ Make-Sets ($E=\Omega(V)$ if graph is connected)
- $\theta(E)$ Find_Sets
-O(V) Unions (exactly $|v|-1$)
We can implement m Set operations on n elements in $O(m \cdot \alpha(m, n))$ time, where α grows very slowly. $\alpha(m, n) \leqslant 4$ if $m, n=10^{80}$.

Disjoint_set Implementations

- Each set in a linked List of its elements. Each elcument point back to "Head" of list, which is the "representative" of the list.

- Using this implementation, Make -Set (x) and Füd_Set (x) can be done in O(1) time.
- Union (x, y) takes more time: "Copy" set of x into that of y, and update pointers. Using y 's tail we can quickly identify where to append. This takes time proportional to size of x^{\prime} s set.

Worst case Scenario:	\# pointer updates	
	Union $\left(x_{1}, x_{2}\right):$	1
	Union $\left(x_{2}, x_{3}\right):$	2
	Union $\left(x_{3}, x_{4}\right):$	3
\vdots		
	Union $\left(x_{n-1}, x_{n}\right):$	$\frac{n-1}{\theta\left(n^{2}\right)}$ time.

- Improvement: Append smaller set to larger one (store size is set header)

A single Union operation can still take $\theta(n)$ time; eeg. if both sets have $\frac{n}{2}$ elements.

- But m set operations, in which n are Make-sets, will tate $O(m+n \lg n)$ time. When an clean's back pointer is updated, its set at least doubles in size. This can happen af most Ign times per element.

Amortized analysis: Average time, but no probability

$$
n \leqslant m
$$

m operation take $O(m+n \lg n)=O(m \log n)$
So $O(\lg n)$ per operation.
We say each operation take $O(\lg n)$ amortized time
Note: Average, but no bad sequences. Some operations will take more than $O(\lg n)$, but every sequence of m operations takes at most $O(m \lg n)$ time.

Amortized Analysis
No probability
Obtain average performance in the worst - Case

No bad sequences

Techniques for Amortized Analysis

- Aggregate analysis
- Accounting method
- Potential method.

Average-Case Analysis
May involve prob.

Average Performance

Possible bod sequences

What we did in disjoint sets was aggregate analysis.

Example: Stack with an added operation.
$\operatorname{Push}(f, x)$: Push x onto stack
Pop (s) : Pop top of stack and return popped object
Multipop (s, k) : Remove min $(|s|, k)$ objects from top.

Multipop (s, k)
while not stack -empty (s) and $k \neq 0$ do Pop (s)

$$
k \leftarrow k-1
$$

Running time of Multipop is $O(\min (|s|, k))$ which means in the worst-case it's $O(n)$
Therefore, a sequence of n operations takes $O\left(n^{2}\right)$ time.

Aggregate Analysis
Get a better bound by considering the entire sequence of n operations.
Claim: Any sequence of n stack operations take $O(n)$ time.

- Any object can be popped at most once after it's pushed. The \# times a pop is called on a non-empty stack (including those in a multipop) is at most equal to \# pushes.
- Given n operations that result in m pops from within multipop, the running time is $O(n+m)$ But $m \leqslant n$, so $O(2 n)=O(n)$.

Each operation runs in $O(1)$ amortized time
Aggregate: "Treat every operation the same way in termor of time"

