
Krusgal's alg . for MST

and disjoint sets
#

Assume we have a data structure of disjoint sets

$ = { Si } such that sin Sj = 0

and supports the following operations .

-Make -set Ca) : $← ⑤ u {5×3}
-
Union (n,y) : $ ← $ - { s, ,s, } u {s, Usa}

Where K E S, and y C- Sz
.

- Find
- Set (n) : returns a unique object that represents S

where KES .

Krusgal 's alg . for MST .

Te 0

for each VE V
do Make- set (v)

sort E by increasing edge weight
for each (UN) E E (in sorted order)

do if find-Set (u) # Find-Set Cv) D (UN) make no cycle
then T←T u { Girl}

Union (u , v) v u& V now in same component

Why does it work ? (previous proof)

①us
S = {n I find-Set (u) = find -SetGg}

[
There is no smaller (due to sorted order)
weight edge that crosses the cut

Example :
-

o

g g

of ¥#
O O- O '

21 13

Time :

- Sorting : ACElog E) = ②(Elogv) since graph is connected

= 0(Elogv) in general since E= OCVZJ

- Otv) Make-sets (E- ra) if graph is connected)
- OTE) find - Sets

- O (V) Unions (exactly WI -1)

We can implement m set operations on n elements in OCm.afm.nl)
time

,
where d grows very slowly . Hmm) £4 if m, n -- 108?

Disjoint - set Implementations
-

• Each set in a linked List of its elements .
Each

Ic 11

element point back to Head of list , which is
the

"

representative " of the list .

Head
→0*7=11-17
-
Tail

• Using this implementation , Make -Set (a) and find -Set Crj can be

done in 04) time .

•
Union (n, y) takes more time :

"

copy
" set of n into that

of Y , and update pointers . Using y 's tail we can quickly
identify where to append .

This takes time proportional to
size of se 's set .

Worst case Scenario :
pointer updates
-

Union (x , , Xz) : l

Union (Xz , Xs) i 2

Union (Xz , Xy) : 3

:

n- Ivirion (Xn
. , gxn) :
-

⑦Cny time .

• Improvement : Append smaller set to larger one
(store size is set header)

A single Union operation can still take Ocn) time ; e.g .

if both sets have Az elements .

• But m set operations ,
in which n are Make - sets

,
will take

Ofmtnlgn) time . When an dean 's back pointer is updated ,
its set at least doubles in size . This can happen at
most Ign times per element .

Amortized analysis : Average time , but no probability
R f m

m operation take 0 (m + nlgn) = 0 (m logo)
So 0(Ign) per operation .

We say each operation take Oclgn) amortized time

Note : Average , but no bad sequences . Some operations
will take more than 0(Ign) ,

but every sequence of
m operations takes at most 0cmIgn) time .

Amortized Analysis Average - case Analysis
- -

No probability May involve prob .

Obtain average
performance in the Average performance
worst- case

No bad sequences possible bad sequences

Techniques for Amortized Analysis

÷÷÷÷÷÷÷÷÷÷÷E÷÷÷÷

Eixample Stack with an added operation .

Push (S, n) : Push X onto stack

Pop (s) : Pop top of stack and return popped object

Multi pop (s, K) : Remove min (1st, K) objects from top .

Multi
pop Cs, K)
while not stack-empty (s) and K # o

do Pop (s)
K ← K- I

Running time of Multipop is 0 (min (1st , KD
which means in the worst- case it's Ocn)

Therefore, a sequence of n operations takes 042) time .

Aggregate Analysis
-

Get a better bound by considering the entire sequence
of n operations .

Claim : Any sequence of n stack operations take Ocn) time .

-

• Any object can be popped at most once after it's pushed .

The # times a pop is called on a non - empty stack

(including those in a multipop) is at most equal to # pushes .

• Given in operations that result in nm pops from within

multi pop , the running time is O@ +m)

But m f n , so Oczn) = Ocn) .

Each operation runs in Oct) armortized time

Aggregate " Treat every operation the same way in terms of time
"

um

:

