
Amortized Analysis Average - case Analysis
- -

No probability May involve prob .

Obtain average
performance in the Average performance
worst- case

No bad sequences possible bad sequences

Techniques for Amortized Analysis

÷÷÷÷÷÷÷÷÷÷÷E÷÷÷÷

Eixample Stack with an added operation .

Push (S, n) : Push X onto stack

Pop (s) : Pop top of stack and return popped object

Multi pop (s, K) : Remove min (1st, K) objects from top .

Multi
pop Cs, K)
while not stack-empty (s) and K # o

do Pop (s)
K ← K- I

Running time of Multipop is 0 (min (1st , KD
which means in the worst- case it's Ocn)

Therefore, a sequence of n operations takes 042) time .

Aggregate Analysis
-

Get a better bound by considering the entire sequence
of n operations .

Claim : Any sequence of n stack operations take Ocn) time .

-

• Any object can be popped at most once after it's pushed .

The # times a pop is called on a non - empty stack

(including those in a multipop) is at most equal to # pushes .

• Given in operations that result in nm pops from within

multi pop , the running time is O@ +m)

But m f n , so Oczn) = Ocn) .

Each operation runs in Oct) armortized time

Aggregate " Treat every operation the same way in terms of time
"

um

:

Another example of aggregate analysis :

In the book : Incrementing a binary counter n times .

c-n→

n bits : 0000000 O

O O O O O O O L

o o o o O 0 Is An increment takes Ocn) time
° ° ° °O°I

Incrementing n times ⇒ Off) time
O O O O O too

:

!

A sequence of n increment operations take Ocn) time .

So each operation takes of) amortized time .

A-flips : n t Z t E
,
+ Iq + . - - - - - f 2n

1stbit 2nd bit

Accounting method (each op . has a different amortized time)
-

• Assign an amortized cost d ; for operation i

•
Let Ci be actual cost of operation i .

• If I > ci , add di - c ; to credit (store that much
on some object)

• If I sci , subtract Ci - Gi from credit . (use that
much from stored)

As long as credit is always so , we have ⇐⇐ - Ci) > o

sofas .EE

Stack : n

-
C c

-

Push ↳ x) 2 I put a credit of 1 on pushed obj .

Pop (s) o I use credit placed on object

Multipop (s, k) o min(1st, K) same as above

• Given n stack operations , ⇐Ii f 2n = Ocn)
• If credit is always > o , then €.ci f €,

I = Off .

•
Is it ?

Total credit is always equal to # objects in stack , and

that's > o
.

Potential method
-

•
Same as

"
credit

" but associated with data structure as a whole

•
Let Di be the data structure after the ith operation . (Initially Do)

• Define a
"

potential function
"

01 CD) such that

01 (Di) 30

(Do) = o

• of CD) measures how "difficult
" the data structure D is

• Let amortized cost of operation i be

di = Ci t 4 (Di) - f(Di -if i

• Edi = Eci + E CDI) - OCD i-D = Eci t (loyal - 4C Do)

= Eci + lock) - 0cm > Eci . +94815,947¥
,

Idea : An operation i with high Ci might have

(Di) - 0 (Di-D to

which makes the structure easier for later operations .

Stack : Define (si) = size of stack after ith operation .

Observe of Csi) > o and QQ) - o .

Puch (Gn) : I = Ci t of Csi) - 0 Csi-D = It I = 2

Pop (s) : I = Ci + & Csi) - loGi-D = I -1=0

Multipop Gig: Ei = Ci t ol Gi) - 06in) = min (ki - it, K) - min (Isi..bk) - o

A sequence of n stack operations have amortized costs 2n .

Another example : Dynamic tables .

-

•
Insert objects in table .

• Start with table size o

•
To insert

, if size -0
,
make it 1 .

•
When no more space, double size of table -(and copy entire table)
-

OGize table)

*m '

f¥3±
¥

Naive analysis : In the worst case, each insert must copy , so quadratic time ?

Aggregateanalysisi.IN a sequence of n inserts , the ith insert

causes a copy off -D elements if Li-D is a power of 2 .

So n operations take

€
,

Ci = ht 2J
= n -1 I -12+4 t . . - -

+2%" s ht 2n=3n= Ocn)
w
-

- int ng tf t - - - -
- n (Itf -1ft . . . -)insert

copying

Accouutmgmethod: charge each operation i , di =3

- use 1 for actual operation
-
store E as credit on two objects
/ \

another objectcopy yourself in future copy

Illustration of accounting method
#

$1

new 'i⇒⇐¥÷¥¥m:&.:c::
By the time table is full again, we would have already payed
to move all elements .

Potential method :

-

Define (Ti) = 2 mum i - size i

Nurmi = # elements after ith insert

size i = size of table after ith insert

observe : 4(To)= 2×0 - 0=0

CTI) > o always save numis sizzi
(table always at least I fuel)

Insert (No expansion) :

di = Ci toCti)- Cti
. .) = It @nvm ; - sizei) - (2mm;, - size ;-D
= It 2 (nomi - nvm i- i) - (size i - size i- i)

= I t 2x I - o = 3

Insert (with expansion) : ft
copies

di = Cito (Ti) - O Cti - i) = nvm i t @nomi - size) - Gamini size,;)

= nurmi + 2 (nomi - nomi - i) - (Siri - size

Expansion means : size i = 2(nami- i) (Doubled)
size is , = nvm ,- , (Full)

di = nomi + 2 - nvm i- i
= Lt nomi - numis, = 2+1=3 .

What about deletions ?

Simple strategy :

-

table full ⇒ double it upon insert as before

table < I fuel ⇒ halve it after delete

Does not work :

Full I]⇒ " insists
ns Repeat .

O (a) time every 2 operations on average ⇒ Ocn) time/op .

Idea: Allow table size to drop below -half full , e-g . use I
,

