Amortized Analysis
No probability
Obtain average performance in the worst - Case

No bad sequences

Techniques for Amortized Analysis

- Aggregate analysis
- Accounting method
- Potential method.

Average-Case Analysis
May involve prob.

Average Performance

Possible bod sequences

What we did in disjoint sets was aggregate analysis.

Example: Stack with an added operation.
$\operatorname{Push}(f, x)$: Push x onto stack
Pop (s) : Pop top of stack and return popped object
Multipop (s, k) : Remove min $(|s|, k)$ objects from top.

Multipop (s, k)
while not stack -empty (s) and $k \neq 0$ do Pop (s)

$$
k \leftarrow k-1
$$

Running time of Multipop is $O(\min (|s|, k))$ which means in the worst-case it's $O(n)$
Therefore, a sequence of n operations takes $O\left(n^{2}\right)$ time.

Aggregate Analysis
Get a better bound by considering the entire sequence of n operations.
Claim: Any sequence of n stack operations take $O(n)$ time.

- Any object can be popped at most once after it's pushed. The \# times a pop is called on a non-empty stack (including those in a multipop) is at most equal to \# pushes.
- Given n operations that result in m pops from within multipop, the running time is $O(n+m)$ But $m \leqslant n$, so $O(2 n)=O(n)$.

Each operation runs in $O(1)$ amortized time
Aggregate: "Treat every operation the same way in termor of time"

Another example of aggregate analysis:
In the book: Incrementing a binary counter n times.

$$
\begin{array}{lll}
n \text { bits: } & \leftrightarrow & \\
& 00000000 \\
& 00000001 \\
& 0000010
\end{array} \quad \text { An increment takes } O(n) \text { lime }
$$

A sequence of n increment operations take $O(n)$ time. So each operation tattles O (1) amortized time.
\#flips: $n+\frac{n}{2}+\frac{n}{4}+\frac{n}{8}+\cdots \cdots \leqslant 2 n$ $15^{5 t}$ bit $2^{\text {nd }}$ bit

Accounting method (each op. has a different amortized time)

- Assign an amortized cost \hat{c}_{i} for operation i
- Let c_{i} be actual cost of operation i.
- If $\hat{c}_{i}>c_{i}$, add $\hat{c}_{i}-c_{i}$ to credit (store that much on some object)
- If $\hat{c}_{i}<c_{i}$, subtract $c_{i}-\hat{c}_{i}$ from credit. (use that much from stored)

As long as credit is always $\geqslant 0$, we have $\sum_{i}\left(\hat{c}_{i}-c_{i}\right) \geqslant 0$
So $\sum_{i} c_{i} \leqslant \sum_{i} \hat{c}_{i}$

Stack:

	\hat{c}	c	
$\operatorname{Push}(s, x)$	2	1	put a credit of 1 on pushed obj.
$\operatorname{Pop}(s)$	0	1	use credit placed on object
Multipop (s, k)	0	$\min (\|s\|, k)$ same as above	

- Given n stack operations, $\sum_{i=1}^{n} \hat{c}_{i} \leqslant 2 n=O(n)$
- If credit is always $\geqslant 0$, then $\sum_{i=1}^{n} c_{i} \leqslant \sum_{i=1}^{n} \hat{c}_{i}=O(n)$.
- Is it?

Total credit is always equal to \# objects in stack, and that's $\geqslant 0$.

Potential method

- Same as "credit" but associated with data structure as a whole
- Let D_{i} be the data structure after the itu operation. (Initially D_{0})
- Define a "Potential function" $\phi(D)$ such that

$$
\begin{aligned}
& \phi\left(D_{i}\right) \geqslant 0 \\
& \phi\left(D_{0}\right)=0
\end{aligned}
$$

- $\phi(D)$ measures how "difficult" the data structure D is
- Let amortized cost of operation i be

$$
\begin{aligned}
& \hat{c}_{i}=c_{i}+\phi\left(D_{i}\right)-\phi\left(D_{i-1}\right) \\
& \cdot \sum \hat{c}_{i}= \sum c_{i}+\sum \phi\left(D_{i}\right)-\phi\left(D_{i-1}\right)=\sum c_{i}+\left(\phi\left(D_{1}\right)-\phi\left(D_{0}\right)\right. \\
&=\sum c_{i}+\phi\left(D_{n}\right)-\phi\left(D_{0}\right) \geqslant \sum c_{i}+\phi\left(D_{2}\right)-\phi\left(D_{1}\right) \\
&+\phi\left(D_{3}\right)-\phi\left(D_{2}\right)
\end{aligned}
$$

Idea: An operation i with high C_{i} might have

$$
\phi\left(D_{i}\right)-\phi\left(D_{i-1}\right)<0
$$

which makes the structure easier for later operations.
Stack: Define $\phi\left(S_{i}\right)=$ size of stack after it operation.
Observe $\phi\left(S_{i}\right) \geqslant 0$ and $\phi\left(S_{0}\right)=0$.

$$
\begin{aligned}
& \operatorname{Puch}(s, x): \hat{c}_{i}=c_{i}+\phi\left(s_{i}\right)-\phi\left(s_{i-1}\right)=1+1=2 \\
& \operatorname{Pop}(s): \quad \hat{c}_{i}=c_{i}+\phi\left(s_{i}\right)-\phi\left(s_{i-1}\right)=1-1=0 \\
& \operatorname{Multipop}(s, k): \hat{c}_{i}=c_{i}+\phi\left(s_{i}\right)-\phi\left(s_{i-1}\right)=\min \left(\left|s_{i-1}\right|, k\right)-\min \left(\left|s_{i-1}\right|, k\right)=0
\end{aligned}
$$

A sequence of n stack operations have amortized cost $\leqslant 2 n$.

Another example: Dynamic tables.

- Insert objects in table.
- Start with table size 0
- To insert, if size $=0$, make it 1 .
- When no move space, double size of table ($\underbrace{\text { (and }}_{\text {(size table) copy entire table) }}$

Example:

Naive analysis: In the worst case, each insert must copy, so quadratic tAme?

Aggregate analysis: In a sequence of n inserts, the ith insert causes a copy of $(i-1)$ elements if $(i-1)$ is a power of 2 .
So n operations take

$$
\sum_{i=1}^{n} c_{i}=\underbrace{n}_{\text {insert }} \underbrace{\sum_{j=0}^{\lfloor\lg n} 2^{j}}_{\text {copying }}=n+\underbrace{1+2+4+\cdots+2^{\lfloor\lg n\rfloor}}_{<n+\frac{n}{2}+\frac{n}{4}+\cdots}<n+2 n=3 n=O(n)
$$

Accounting method: charge each operation $i, \hat{c}_{i}=3$

- use 1 for actual operation
- store 2 as credit on two objects
copy yourself in future copy another object

Illustration of accounting method

By the time table is full again, we would hove already payed to move all elements.

Potential method:
Define $\phi\left(T_{i}\right)=2$ mum $_{i}-$ size $_{i}$
numis $=$ \#elcuments after $i^{\text {th }}$ insert
size $i=$ size of table after $i^{\text {th }}$ insert
Observe: $\quad \phi\left(J_{0}\right)=2 \times 0-0=0$
$\phi\left(T_{i}\right) \geqslant 0$ always since mum $i \geqslant \frac{\text { size i }_{i}}{2}$
(table always at least $\frac{1}{2}$ full)
Insert (No expansion):

$$
\begin{aligned}
\hat{c}_{i}=c_{i}+\phi\left(T_{i}\right)-\phi\left(T_{i-1}\right) & =1+\left(2 n u m_{i}-\text { size }_{i}\right)-\left(2 n u m_{i-1}-\operatorname{size}_{i-1}\right) \\
& =1+2\left(\text { num }_{i}-\text { num }_{i-1}\right)-\left(\text { size }_{i}-\text { six }_{i-1}\right) \\
& =1+2 \times 1-0=3
\end{aligned}
$$

Insert (with expansion):

$$
1+\# \text { copies }
$$

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\phi\left(T_{i}\right)-\phi\left(T_{i-1}\right)={n u m m_{i}}+\left(2 \text { nom }_{i}-\text { size }_{i}\right)-\left(2 \text { nom } m_{i-1}-\text { size }_{i-1}\right) \\
& =\text { numb }_{i}+2\left(\text { nom }_{i}-\text { nom }_{i-1}\right)-\left(\text { sire }_{i}-\text { size }_{i-1}\right)
\end{aligned}
$$

Expansion means: $\operatorname{size}_{i}=2\left(\right.$ nom $\left._{i-1}\right)$ (Doubled)
size $_{i-1}=$ numb $_{i-1} \quad$ (Full)

$$
\hat{c}_{i}=n u m_{i}+2-n u m_{i-1}=2+n u m_{i}-n u m_{i-1}=2+1=3
$$

What about deletions?

Simple strategy:
table full \Rightarrow double it upon insert as before table $<\frac{1}{2}$ full \Rightarrow halve it after delete

Does not work:

$O(n)$ time every 2 operations on average $\Rightarrow O(n)$ bime/op.
flea: Allow table size to drop below half full, eg. use $\frac{1}{4}$

