BFS and Shortest path
Breadth First Search produces a tree rooted at a source node $s$ such that path from $s$ to $v$ in tree is shortest path from $s$ to $v$ in $G$.

Source


Note: Graph could be directed or undirected

Idea: Go by breadth, propagate a wave of distance 1


$$
\operatorname{BFS}(s)
$$

for each $u \in V-\{s\}$
do $d[u] \leftarrow \infty$

$$
d[s] \leftarrow 0
$$

$Q \leftarrow\{s\}$
while $Q \neq \phi$
do remove $u$ from $Q$
for each $V \in \operatorname{adj}[u]$
do if $d[v]=\infty$
for each $V \in \operatorname{adj}[u]$
$d_{0}$ if $d[v]=\infty$
then $d[v] \leftarrow d[u]+1$ put $v$ in $Q$
use FiFo queue to process vertices

adding/removing
can be done in $O(1)$ time
(Keep Head \& Tail pointers)

parent pointers as in book

Running time: $O(V+E)$ (linear)


BFS may not reach all vertices But that's ok since distance would be $\infty$

Proof of correctness?
Similar to alg. With weighted edges, Dijkstra's Alg. (Later)

Generalize to weighted Graphs

- Given $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}$ (BES: $w(c)=1$ for all $c \in E$ )
- The weight of a path $p=V_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow V_{k}$ is

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

- Shortest path means path with min. weight.

Properties of shortest path:

- Optimal substructure (greedy and DP later) subpath of shortest path are shortest path


Proof: Cut-and-paste: If some subpath were not a shortest path, we could anbstitute the shorter subpath and create a shorter total path

- Triangular Inequality:

Define $\delta(u, v)=$ weight of shortest path from $u$ to $v$.

$$
\delta(u, v) \leqslant \delta(u, x)+\delta(x, v)
$$

Proof:


Shortest path $u \leadsto v$ is not longer than any other path.

- Well-definedness:

If we have negative weight cycle in graph $\Rightarrow$ some shortest path may not exist. (go around the cycle again)


Most basic Algorithm: Bellman_ford
for each $V \in V$

$$
\begin{aligned}
& d_{0} d[v] \leftarrow \infty \\
& d[s] \leftarrow 0
\end{aligned}
$$

for $i \leftarrow 1$ to $|V|-1$
do for each cadge $(u, V) \in E$
Initialization
$\left.\begin{array}{c}\text { do if } d[v]>d[u]+w(u, v) \\ \text { then } d[v] \leftarrow d[u]+w(u, v)\end{array}\right\} \operatorname{Relax}(u, v)$
for each edge $(u, v) \in E$
do if $d[v]>d[u]+w(u, v)$
then No Solution (negative waist cycle)

Time $O(V E)$

Relaxation


$$
d[v]>d[u]+w(u, v)
$$

from $s$ to $v$ by going through $u$.

Relax all edges $|V|-1$ times.

Example:


|  | $A$ | $B$ | $C$ | $D$ | $E$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Init | 0 | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
| Pass | 1 | 0 | -1 | 2 | 1 |
|  | 1 |  |  |  |  |
| Pass | 2 | 0 | -1 | 2 | -2 |
| $\vdots$ |  |  |  |  |  |
| (no more changes) |  |  |  |  |  |

Relax edges in this order:

$$
(A, B)(A, C)(B, C)(B, D)(D, B)(D, C)(E, D)(B, E)
$$

How fast do we Converge? Depends on order of relaxations. But after (VI-1 pass, we will (no negative weight cycle)

Why does Bellman ford Converge?
First, $\operatorname{Lemma} a: d[v] \geqslant \delta(s, v)$ at all times.
Assume $V$ is first to violate above property,
So $\quad d[v]=d[u]+w(u, v) \quad$ ( $u$ caused $d[v]$ to change)

$$
\begin{array}{rlrl}
d[v] & <\delta(s, v) & \\
& \leqslant \delta(s, u)+w(u, v) & & \text { [triangular inequality }] \\
& \leqslant d[u]+w(u, v) \quad & {[v \text { first to violate property }]}
\end{array}
$$

Consider the shortest path from $s$ to $V$

$$
s \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v
$$

- Initially $d[s]=0$ is correct, and will never change
* previous Lemma $d[v] \geqslant \delta(s, v)$ * code never increases $d$
- After 1 pass through edges, $d\left[v_{1}\right]$ will be set to $d[s]+w\left(s, v_{1}\right)$ and it will be the correct $\delta\left(s, v_{1}\right)$ (optimal substructure), and will never change.
- After 2 passes through edges, $d\left[v_{2}\right]$ will be set to $d\left[v_{1}\right]+w\left(v_{1}, v_{2}\right)$ and it will be the correct $\delta\left(s, v_{2}\right)$ (optimal substructure), and will never change.

No negative weight cycle $\Rightarrow$ every shortest path has at most $|V|-1$ edge.

Dijkstra's algorithm

- No negative edge weights
- Perform 1 Pass by figuring out a good relaxation order
- Use a priority queue (min clueue) like Prim's alg.

Main Idea:
vertex with smallest dist. so far is correct. Remove it from $Q$ and relax its edges

Queue Operations

Dijkstra (G)
for each $V \in V$
do $d[v] \leftarrow \infty$
$d[s] \leftarrow 0$
$S \leftarrow \phi$
$Q \leftarrow V$
while $Q \neq \phi$
do $u \leftarrow$ Extract_ Min $(Q)$
$S \leftarrow S u\{u\}$
for each $V \in \operatorname{adj}[u]$
$d_{0}$ if $d[v]>d[u]+w(u, v)$
then $d[v] \leftarrow d[u]+w(u, v)$
Decrease - Key

Example: Run it.


Why does it work?
As before $d[v] \geqslant \delta(s, v)$ (still just doing relaxations)
Correctness: When $u$ added to $S, d[u]=\delta(s, u)$
Proof by contradiction: Assume $u$ is first to violate above and look at situation just before adding $u$ to $s$

- There must be a path
 from $s$ to $u$; otherwise $\delta(s, u)=\infty=d[u]$
- Pick shortest path which cross S with edge ( $x, y$ ) (s could be $x$, and $y$ could be $u$ )

claim :

$$
d[y]=\delta(s, y)
$$

- $S \leadsto y$ is subpath of shortest path
- $d[x]=\delta(s, x) \quad(x \in S, u$ is first to violate this)
- $d[y]=d[x]+w(x, y) \quad$ (when edge $(x, y)$ relaxed)

Now: $\quad d[u] \neq \delta(s, u) \Rightarrow$
$d[u]>\delta(s, u)$ (Lemma)
$=\delta(s, y)+\underbrace{\delta(y, u)}$
$=d[y]+\geq 0$ (no negative weights)
$\geqslant d[y]$, contradicts moving $u$ to $S$.

