
BFS and shortest path
-

Breadth first search produces a tree rooted at a source node

s such that path from s to v in tree is shortest path

from s to V in G .

source Note : Graph could be directed
→ -

or undirected

*
g h

Idea : Go by breadth , propagate a wave of distance 1
•
S

IIe i Use FIFO queue to process vertices

At .
I. ←WIIG

BFS (s)
Head tail

for each u EV- fs} adding (removing
do dcu] too can be done in Oct) time

dcs] ← o

Q← Es}
(keep Head & Tail pointers)

while Q # to
do remove U from Q

%ea.is
.

:c:÷:c
. fief'sthen das ← d +1

as in book
put v in Q

Running time : OCVTE) (linear)

Example :
S

o • 3
-

→ • I

¢
.

. *

• g o z h
i ¢f

3
• 3 He

legh

BFS may not reach all vertices
gfhd i

But that's ok since distance would be a Kd i

fi

Proof of correctness ?
¢

Similar to alg . with weighted edges , Dijkstra 's Alg . (Later)

Generalize to weighted Graphs
-

•
Given G = (v, E) and a weight function w : E→ IR

(Bfs : W (e) = 1 for all eEE)

•
The weight of a path p = Vo → v, → . . . → Vk is

Wfp) = ÷
,

wait , Vi)

• Shortest path means path with min - weight .

Properties of shortest path :
-

• Optimal substructure (greedy and DP later)

sub path of shortest path are shortest path

O_O-0-0-0-0
9"

"
-

-

-
- - - - -

--
-

/

Proof : cut- and- paste : If some subpath were not a shortest path,
we could substitute the shorter sub path and create a shorter

total path

• Triangular Inequality :

Define scum) = weight of shortest path from u to v .

8(UN) E S (u ,a) + 8 fav)

Prod que
shortest path um>v is

not longer than any other path .

>②
#

①

•
Well

- defined ness :

If we have negate weight cycle in graph ⇒ some shortest

path may not exist . (go around the cycle again)

f
" °

g
v I

0 so 0

o→o→¥o

Most basic Algorithm : Bellman
-

Ford

for each VE V Initializationdo d ← oo

d ← o

for i← I lo IVI - I Relaxationsdo for each edge (un) E E
do if d Cv] > d [u] + WGN)

then da] ← day +way } Relax(UN)
for each edge EE checKCfdo if d [v] > d[u] + WGN)

then No solution (negative weight cycle)

Time OCVE)

Relaxation
-

④

day
""

{/
can get better paler

•
s

from s to V by
d [v] > d [u] t w (UN)

going through U -

Relax all edges IVI - t times .

Example :

-

③
" ¥:: ::::÷

Pass 2 O - l Z - 2 I

⑧

① : (no more changes)

Relax edges in this order :

(AIB) (Ap) (Bec) (BP) (D,B) ⑦c) ⇐D) (B, E)

How fast do we converge ? Depends on order of relaxations .

But after IVI - I passes, we will (no negative weight cycle)

Why does Bellman Ford converge ?

First Lemma : d Ev] z s (sie) at all times .I
-

Assume V is first to violate above property ,

so da] = d [u] + when) (u caused dad to
'

change)

d Ev] s 86,v)

s s Cs, u) + when) [triangular inequality]
E d [u] + w (un) [v first to violate property]

Consider the shortest path from s to V

S → V
, → Vz → . . . → V

• Initially dfs] = o is correct
, and will never change

* previous Lemma d [v] > 86N) * code never increases d

• After I pass through edges , d Evil will be set to d
+ Wcs,VA

and it will be the correct 86N,) (optimal substructure) ,

and will never change .

• After 2 passes through edges, DEVI will be set to d + WH, vz)

and it will be the correct SCs, vz) (optimal substructure),
and will never change .

:
•

No negative weight cycle ⇒ every shortest path has at
most WI - I edge .

Dijkstra 's algorithm
-

-
No negative edge weights

- Perform 1 Pass by figuring out a good relaxation order

-
Use a priority queue (min dueae) like Prim's alg .

Main Idea :

vertex with smallest dist .:÷:::÷÷::⇒O

Queue Operations
-

Dijkstra (GI OG) inserts
for each VE V

do da] ← oo OW) Extract-Min
d ← o

OCE) Decrease
- key

s ← 0
Q ← v Running time :
while Q # to

do U ← Extract
-Min (Q)

like Prim 's

s ← Su fu }
for each V E adj [u]

do if day > doit Wfrv)
then da] ← day + wait
-

Decrease - key

Eixample Run it
.

÷ .
00

Why does it work ?

As before d [v] z s Csn) (still just doing relaxations)
correctness : When u added to S

,
d [u] = Scs , u)

Proof by contradiction : Assume u is first to violate above
-

and look at situation just before adding u to s

•

s

on ::÷÷÷:÷÷÷.
• Pick shortest path
which crosses S with

edge (x.y)
(s could be a , andy could be u)

soI
" ! "

is:b .am , snort.. ..
• dad = 86, x) (ne s , u is first to violate this)

• day] - d [sett wCn,y) (when edge (x,g) relaxed)

Now : d [u] # Ks, u) ⇒

d[u] > 56, u) (Lemma)

= 86,y) + Sly , u)
-

= day] +3630 (no negative weights)
> day]

,
contradicts moving u to S .

