Solving Recurrence Equations
Asymptotically
Consider $T(n)= \begin{cases}2 T(n / 2)+c n & n>1 \\ c & n=1\end{cases}$
Assume for simplicity that n is a pomes of 2
Show $T(n)=c n\left(\log _{2} n+1\right)$
Base case: $n=1 \Rightarrow C n\left(\log _{2} n+1\right)=c=T(1)$
Inductiotive step: Assume $T(n)=c_{n}(\log n+1)$ up to $m<n$

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+c n=2 c \frac{n}{2}\left(\log _{2} \frac{n}{2}+1\right)+c n \\
& =c_{n}\left(\log _{2} n-1+1\right)+c n=c_{n}\left(\log _{2} n+1\right)
\end{aligned}
$$

What if n is not a power of 2 ?

$$
\begin{gathered}
T(n)>T\left(2^{\left\lfloor\log _{2} n\right\rfloor}\right)=c 2^{\left\lfloor\log _{2} n\right\rfloor\left(\log _{2} 2^{\left.\log _{2} n\right\rfloor}+1\right)} \\
\geqslant c 2^{\log _{2} n-1}\left(\log _{2} 2^{\log _{2} n-1}+1\right) \\
=\frac{c n}{2}\left(\log _{2} n-1+1\right)=\frac{1}{2} c n \log _{2} n
\end{gathered}
$$

Similarly:

$$
\begin{aligned}
\frac{\operatorname{losl} l y:}{T(n)} & <T\left(2^{\Gamma \log _{2} n}\right)=c 2^{\left\lceil\log _{2} n\right\rceil}\left(\log _{2} 2^{\left\lceil\log _{2} n\right\rceil}+1\right) \\
& \leqslant c 2^{\log _{2} n+1}\left(\log _{2} 2^{\log _{2} n+1}+1\right) \\
& =2 c n\left(\log _{2} n+2\right)
\end{aligned}
$$

Both of these are $\theta(n \log n)$

Since we are interested in asymptotic behavior, the rule of thumb is:

1) Ignore bare care (it's satisfied for some large enough n) e.g. We could stay $T(n) \leqslant c_{n} \log n$ then $T(1)$ is NoT satisfied! (it's ok)
2) Ignore that n may not be a power of something appropriate, e.g. 2 treat $\frac{n}{2}$ as if it's an integer
3) Fgnore floors and ceilings

$$
\text { e.g. } \left.T(n)=T\left(L \frac{n}{2} J\right)+T\left(\Gamma \frac{n}{2}\right\rceil\right)+c_{n}
$$

is the real recurrence.

Substitution method:
Similar to induction with above 3 points in mind.

1) Guess solution
2) Verify it.

Example: $\quad T(n)=2 T(n / 2)+\theta(n)$
Guess $T(n)=\theta(n \log n) \quad[$ how? Later...]
Show upper and lower bounds separately by changing

$$
T(n)=2 T(n / 2)+c n
$$

and showing:. $T(n) \leqslant d n \log n$ for some d

- $T(n) \geqslant d n \log n$ for some d

$$
\text { - } \begin{aligned}
T(n) & \leqslant 2\left[d \frac{n}{2} \log \frac{n}{2}\right]+c n \quad\left(T\left(\frac{n}{2}\right) \leqslant d \frac{n}{2} \log \frac{n}{2}\right) \\
& =d n \log \frac{n}{2}+c n=d n \log n-d n+c n \\
& \leqslant d_{n} \log n \text { if }-d n+c n \leqslant 0 \quad(d \geqslant c)
\end{aligned}
$$

So $T(n)=O(n \log n) \quad[$ upper bound $]$

$$
\begin{aligned}
\cdot T(n) & \geqslant 2\left[d \frac{n}{2} \log \frac{n}{2}\right]+c n \quad\left(T\left(\frac{n}{2}\right) \geqslant d \frac{n}{2} \log \frac{n}{2}\right) \\
& =d n \log \frac{n}{2}+c n=d n \log n-d n+c n \\
& \geqslant d n \log n \text { if }-d n+c n \geqslant 0 \quad(d \leqslant c)
\end{aligned}
$$

So $T(n)=\Omega(n \log n) \quad[$ lower bound $]$

So $T(n)=\theta(n \log n)$. Done!

$$
T(n)=8 T(n / 2)+\theta\left(n^{2}\right)
$$

Guess $T(n)=\theta\left(n^{4}\right)$

$$
T(n)=8 T(n / 2)+c n^{2}
$$

Show $T(n) \leqslant d n^{4}$
Assume $T\left(\frac{n}{2}\right) \leqslant d\left(\frac{n}{2}\right)^{4}$

$$
\begin{aligned}
T(n) & \leqslant 8 d\left(\frac{n}{2}\right)^{4}+c n^{2}=\frac{1}{2} d n^{4}+c n^{2} \\
& =d n^{4}-\frac{1}{2} d n^{4}+c n^{2} \\
& \leqslant d n^{4} \text { if }-\frac{1}{2} d n^{4}+c n^{2} \leqslant 0
\end{aligned}
$$

we need $-d n^{2}+2 c \leqslant 0 \Rightarrow d \geqslant \frac{2 c}{n^{2}}$ Any $d>0$ is good for
So $T(n)=O\left(n^{4}\right)$ large enough n.

Observe that we cannot prove $T(n)=\Omega\left(n^{4}\right)$ because we will need to find a constant $d \leqslant \frac{2 c}{n^{2}}$ (we cannot)

In the previous example $T(n)=\theta\left(n^{3}\right)$
That's why we can't prove $T(n)=\theta\left(n^{4}\right)$

$$
T(n)=8 T(n / 2)+c n^{2}
$$

Guess $T(n)=\theta\left(n^{3}\right)$ and try to prove $T(n) \leqslant d n^{3}$

$$
\begin{aligned}
T(n) & \leqslant d\left(\frac{n}{2}\right)^{3}+c n^{2} \quad \text { Assume } T\left(\frac{n}{2}\right) \leqslant d\left(\frac{n}{2}\right)^{3} \\
& =d n^{3}+c n^{2} \not d n^{3}(\text { didn't work) }
\end{aligned}
$$

Note: $c a n ' t$ stay $d n^{3}+\mathrm{cn}^{2}=O\left(n^{3}\right)$, we have to prove exact form
Subtract a lower order term: $T(n) \leqslant d n^{3}-d^{\prime} n^{2}$

$$
\begin{aligned}
T(n) & \leqslant 8\left[d\left(\frac{n}{2}\right)^{3}-d^{\prime}\left(\frac{n}{2}\right)^{2}\right]+c n^{2} \\
& =d n^{3}-2 d^{\prime} n^{2}+c n^{2} \\
& =d n^{3}-d n^{2}-d n^{2}+c n^{2}
\end{aligned}
$$

works if $d^{\prime} \geqslant c$.

How do we guess?

- Experience:
*T(n) = $2 T\left(\frac{n}{2}+a\right)+\theta(n)$ (where a is ctr) still guess $T(n)=\theta(n \log n)$
* $T(n)=2 T(\sqrt{n})+\lg n$ let $m=\lg n$ $T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m$ let $T\left(2^{m}\right)=S(m)$
$S(x)=2 S(\mathrm{~m} / 2)+m$
$S(m)=\theta(m \log m)$

$$
\begin{aligned}
T(n) & =\theta(n \log x)=\theta(\log n \cdot \log \log n) \\
* T(n) & =4 T(n / 2)+c n^{2} \log n \\
T(n) & =O(G(n)) \text {, when } G(n)=4 G(n / 2)+c n^{2} \\
T(n) & =\Omega(F(n)), \text { where } F(n)=4 F(n / 2)+c n^{2-\varepsilon}
\end{aligned}
$$

- Iterate:

$$
\begin{aligned}
T(n) & =8 T(n / 2)+c n^{2} \\
& =8\left[8 T(n / 4)+c\left(\frac{n}{2}\right)^{2}\right]+c n^{2} \\
& =c n^{2}+2 c n^{2}+64 T(n / 4) \\
& =c n^{2}+2 c n^{2}+64\left[8 T(n / 8)+c\left(\frac{n}{4}\right)^{2}\right] \\
& =c n^{2}+2 c n^{2}+4 c n^{2}+64[8 T(n / 8)] \\
& =c n^{2}+2 c n^{2}+4 c n^{2}+\cdots+8 \log _{2} n T(1) \\
& =c n^{2} \sum_{i=0}\left(2^{i}\right)+\theta\left(n^{3}\right) \\
& =c n^{2}\left(\frac{\log ^{2} n-1}{2-1}!+\theta\left(n^{3}\right)=\theta\left(n^{3}\right)\right.
\end{aligned}
$$

- Recursive Tree visualization:

$$
T(n)=T\left(\frac{n}{3}\right)+T\left(\frac{2 n}{3}\right)+\theta(n)
$$

Master method:

$$
\begin{aligned}
& T(n)=\operatorname{aT}\left(\frac{n}{b}\right)+\theta(f(n)) \quad a \geqslant 1, b>1, f(n)>0 \\
& \underbrace{\left(\frac{n}{b}\right)}_{f\left(\frac{n}{b^{2}}\right)} \\
& f(n) \\
& \text { af(}\left(\frac{n}{b}\right) \\
& \left.\begin{array}{c|c}
\vdots & \vdots \\
c & \vdots
\end{array} a^{\log _{b} n}\right) \\
& T(n)=\theta\left(\sum_{i=0}^{\log _{b} n-1} a^{i} f\left(\frac{n}{b^{i}}\right)\right)+\theta\left(n^{\log _{b} a}\right)
\end{aligned}
$$

proof ommited: Compare $f(n)$ to $n^{\log _{b} a}$
$\frac{f(n)}{\log _{b} a}=O\left(n^{-\varepsilon}\right) \quad \varepsilon>0, T(n)=\theta\left(n^{\log _{b} a}\right)$
(leaves contribute more)

$$
\text { - } \frac{f(n)}{n^{\log _{b} a}}=\theta\left(\log ^{k} n\right) \quad k \geqslant 0, T(n)=\theta\left(n^{\log _{b} a} \log ^{k+1} n\right)
$$

- $\frac{f(n)}{n^{\log _{b} q}=} \begin{gathered}\Omega\left(n^{\varepsilon}\right) \varepsilon>0, T(n)=\theta(f(n)) \\ \text { (root contributes more) }\end{gathered}$
(root contributes more)
technical condition:
af($\left.\frac{n}{b}\right) \leqslant c f(n)$ for some $c<1$ and sufficiently large n
e.g. True if $f(n)=n^{k}$

Examples: - Merge Sort: $T(n)=2 T(n / 2)+\theta(n)$

$$
n^{\log _{b} a}=n \quad \frac{f(n)}{n}=\theta(1)=\theta\left(\log ^{0} n\right) \Rightarrow T(n)=\theta(n \log n)
$$

- Strassen: $T(n)=7 T(n / 2)+\theta\left(n^{2}\right)$

$$
\begin{aligned}
& n^{\log _{b} a}=n^{2.81}, \frac{f(n)}{n^{2.81}}=n^{-0.81} \Rightarrow T(n)=\theta\left(n^{2.81}\right) \\
& \text { - } T(n)=4 T(n / 2)+n^{3} \\
& n^{\log _{b} a}=n^{2}, \frac{f(n)}{n^{2}}=n^{\prime} \Rightarrow T(n)=\theta\left(n^{3}\right) \\
& \text { - } \operatorname{cose} 3 \\
& T(n)=4 T(n / 2)+\theta\left(n^{2} / \log _{n} n\right) \\
& n^{\log _{b} a}=n^{2}, \frac{f(n)}{n^{2}}=\frac{1}{\log n}=\left\{\begin{array}{l}
O\left(n^{-\varepsilon}\right), \varepsilon>0 \text { ? } \\
\theta\left(\log ^{k} n\right), k \geqslant 0 \text { ? } \\
\Omega\left(n^{\varepsilon}\right), \varepsilon>0 \text { ? }
\end{array}\right. \\
& \text { Can't use Master Method. }
\end{aligned}
$$

$$
T(n)=O\left(n^{2} \log n\right), T(n)=\Omega\left(n^{2-\varepsilon}\right) \text { for } \varepsilon>0
$$

Guess $T(n)=n^{2} \log \log n$ and wo subatination method.

