The method of Indicator Random Variable

- Simple technique for comparing the expected value of a random variable:

$$
E[x]=\sum_{x} x p(x)
$$

- Given a sample space and an event A, an indicator random variable for event A is

$$
X_{A}= \begin{cases}1 & \text { if } A \text { occurs } \\ 0 & \text { if } A \text { does not occur }\end{cases}
$$

Then $E\left[X_{A}\right]=1 \cdot P(A)+0 \cdot[1-P(A)]$

$$
=P(A)
$$

- Together with linearity of expectation, this is powerful.
- Let's see how this is useful

Example: Toss the coin n times and let x be the number of heads. $X \in\{0,1,2, \ldots, n\}$ What is $E[x]$?

$$
E[X]=\sum_{k} k P(X=k)=\sum_{k=0}^{n} k\binom{n}{k} P^{k}(1-p)^{n-k}=?
$$

Let $X_{i}= \begin{cases}1 & \text { Head on tass } i \\ 0 & \text { othersirse }\end{cases}$

$$
E\left[x_{i}\right]=P(H)=p
$$

Observe $X=x_{1}+x_{2}+\cdots+x_{n}=\sum_{i=1}^{n} x_{i}$
Linearity:

$$
\begin{aligned}
E[x]=E\left[x_{1}+x_{2}+\cdots+x_{n}\right] & =E\left[x_{1}\right]+E\left[x_{2}\right]+\cdots+E\left[x_{n}\right] \\
& =n p \text { (done!) }
\end{aligned}
$$

General Strategy

1) Define indicator random variables

$$
x_{i}= \begin{cases}1 & A_{i} \text { occurs } \\ 0 & \text { otherwise }\end{cases}
$$

2) Find $E\left[X_{i}\right]=P\left(A_{i}\right)$ [should be easy]
3) Express quantity of interest x as $x=\sum_{i} x_{i}$
4) Use Linearity of expectation to find $E[x]$

$$
E[x]=\sum_{i} E\left[x_{i}\right]
$$

Consider hiring problem in book (slightly modified)

- we interview n candidates, this happens over time
- If the current candidate is the best so far, we hire
- There is a cost of hiring $c=1$

Hire $(A, n) A$ is an array of distinct positive integers $\cos t \longleftarrow 0$
best $\leftarrow 0$
for $i \leftarrow 1$ to n
do if $A[i]>$ best then best $\leftarrow A[i]$ hire candidate i $\cos t \leftarrow \cos t+1$
return cost

Worst case:
When numbers appear in increasing order i.e. candidates appear in increasing order of qualification We hire all of therm, cost is n

Probabilistic Analysis (avg. Case):

- Assume uniform random permutation each of the $n!$ permutations appear with equal probability
- We hire candidate i if $A[i]$ is longest among $A[1 \ldots-i]$
- Under above assumption, this happens with prob. $\frac{1}{i}$ since each of the first i candidates is equally ${ }^{i}$ likely to be the beat.
(well, this might regive a proof but) let's follow intuition

Illustration

current interview

Under uniform random permutation each of the first i candidates has equal probability of being the best, that's $\frac{1}{i}$

Define

$$
\begin{aligned}
& \text { Define } \\
& \qquad x_{i}= \begin{cases}1 & i^{t h} \text { candidate is best } \\
0 & \text { otherwise. }\end{cases} \\
& E\left[x_{i}\right]=\frac{1}{i}=1 \cdot \frac{1}{i}+0\left(1-\frac{1}{i}\right)
\end{aligned}
$$

let X be total number of hires, $X=\sum_{i=1}^{n} x_{i}$

$$
\begin{aligned}
E[X]=\sum_{i=1}^{n} E\left[x_{i}\right] & =\sum_{i=1}^{n} \frac{1}{i}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \\
& =1+\sum_{i=2}^{n} \frac{1}{i}
\end{aligned}
$$

$$
E[x]=\sum_{k=1}^{n} k \underbrace{P(k)}_{?}
$$

$\sum_{i=2}^{n} \frac{1}{i} \leqslant \int_{1}^{n} \frac{1}{x} d x=\left.\ln x\right|_{1} ^{n}=\ln n-\underbrace{\ln 1}_{0}=\ln n$
So $E[X]=O(\log n)$

Bounding Sums by integrals

$$
\int_{a}^{b+1} f(x) d x \leqslant \sum_{i=a}^{b} f(i) \leqslant \int_{a-1}^{b} f(x) d x
$$

Randomized Alg orithm.
Instead of relying on the assumption about the input we enforce the random order, the alg. becomes randomized. Hire (A, n)

Essentially, for each position i, we assign one of the elements in $A[i \ldots n]$ randomly
(need a proof that each of the $n!$ permutations is generated with prob. $\frac{1}{n!}$)

Induction:

can be any in $A[i \ldots n]$ with prob. $\frac{1}{n-i+1}$

$$
\frac{(n-i+1)!}{n!} \times \frac{1}{n-i+1}=\frac{(n-i)!}{n!}=\frac{[n-(i+1)+1]!}{n!}
$$

When $i=n+1$ (Termination)

$$
\text { prob }=\frac{[n-(n+1)-1]!}{n!}=\frac{0!}{n!}=\frac{1}{n!}
$$

Back to Clincksort:
Without Loss of generality, assume the elements are $\{1,2,3, \ldots, n\}$
Define (for $i<j$):

$$
\begin{array}{ll}
i<j): \\
x_{i j}= \begin{cases}1 & i \& j \text { are compared } \\
0 & \text { otherwise } .\end{cases}
\end{array}
$$

$i \& j$ are compared at most once, and this happens if either i or j is the first pivot in $\{i, i+1, \ldots, j\}$ otherwise i\& j go in separate ways. This has prob. $\frac{2^{\circ}}{j-i+1}$ Total number of comparisons

$$
X=\sum_{i}^{n-1} \sum_{j>i}^{n} X_{i j}^{n} \sum_{i=1}^{n} X_{i j}
$$

$$
\begin{aligned}
E[x] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[x_{i j}\right]=\sum_{i=1}^{n-1} \underbrace{\sum_{j=i+1}^{n} \frac{2}{j-i+1}} \\
& \leqslant 2 \sum_{i=1}^{n-1}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-i+1}\right) \\
& \leqslant 2 \sum_{i=1}^{n-1}\left(\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right) \leqslant 2 n \sum_{j=2}^{n} \frac{1}{j} \\
& =0(n \log n) \\
\text { \& } & =0(\log n)
\end{aligned}
$$

$n^{\text {th }}$ Harmonic number

