Sorting in linear time

- Assume clements in $A[1 \ldots n]$ are distinct pos. integers
- Consider the following algorithm.
for $i \leftarrow 1$ to n

$$
B[A[i]] \leftarrow A[i]
$$

example:

- Kind of sorted! in linear time !!
- Courting Sort achieves a similar effect with a little more sophistication.

But why were we able to sort in linear time?
we used the values in
Something other than com parison!

A comparison based sorting algorithm runs in $\Omega(n \log n)$ time.

Decision tree proof.

Insertion sort $\quad|a| b|c| \quad n=3$

Every comparison based alg. can be modeled as a binary decision tree with $n!$ leaves

$$
\begin{gathered}
\text { \# leaves } \leqslant 2^{h} \Rightarrow n!\leqslant 2^{h} \Rightarrow h \geqslant \log _{2} n! \\
h=\Omega(n \log n)
\end{gathered}
$$

Counting Sort (A, B, n, k)
for $i \leftarrow 0$ to k
do $c[i] \leftarrow 0$
for $j \leftarrow 1$ to n
do $c[A[j]] \leftarrow c[A[j]]+1$
for $i<1$ to k

$$
\begin{aligned}
& i \leftarrow 1 \text { to } k \\
& \text { do } c[i] \leftarrow c[i]+c[i-1] \quad \Delta[i]=\# \text { elem } \leqslant i
\end{aligned}
$$

for $j \in n$ downto 1
do $B[C[A[j]]] \leftarrow A[j]$. Place correctly $C[A[j]] \leftarrow C[A[j]]-1$ and decrease count
elements $\in\{0,1,2, \ldots, k\}$

- Initialize count
- count how many $A[j]$'s

observation 1: Correct position of $A[j]=$ \#elements $\leqslant A[j]=C[A[j]]$ observation 2: Last loop mates counting sort stable.
stable: elements with same value preserve their original order

Radix Sort (A, d) Assume d digits
for $i \leftarrow 1$ to d
do stable sort A on digit i
Example:

326	690	704	326
453	751	608	435
608	453	326	453
835	704		
751	835	835	608
435	435	751	690
704	326	453	704
690	608	690	751
	L	1	835
		sorted	1

Running time : $\theta(d(n+k))$ d Pass each $\theta(u+k)$ time.

\# passes: $\left\lceil\frac{b}{r}\right\rceil$
time per pass: $n+2^{r}$
Total time: $\theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)$
How to choose r ? let $r \approx \log _{2} n \Rightarrow \frac{2 b n}{\lg n}$
we get $\theta\left(b \frac{n}{\lg n}\right)$
If our largest number is $O\left(n^{d}\right)$, where d is const. we need $b=O(d \lg n)$ bits to represent the numbers Running time $=O(d n) \quad$ [linear].

Bucket Sort

- Elements in $A[1 \ldots n]$ are uniformly distributed in $[0,1)$
- Divide then into n buckets using $B[0 \ldots n-1]$
- map $A[i]$ to bucket $\lfloor n$.A $[i]\rfloor$ (bucket \equiv list)
(this is some Sort of Hashing, we look at Hashing in more detail later)
Bucket Sort (A, n)
for $i \leftarrow 1$ to n
do insert $A[i]$ into list $B[\operatorname{Ln}, A[i]]]$
for $i \leftarrow 0$ to $n-1$
do sort list $B[i]$ using insertion sort concatenate $B[0], B[1], \ldots, B[n-1]$ return concatenated lists

$$
n A[i] \leqslant n A[j]
$$

Example:
$n=10$
0.01
0.2
0.3
0.35
0.4
0.5
0.56
0.7
0.9
0.99

$$
\begin{aligned}
& \quad x_{i j}=\left\{\begin{array}{l}
1 i^{\text {th }} \text { element maps to bucket } j \\
0 \text { otherwise }
\end{array}\right. \\
& \cdot E\left[x_{i j}\right]=1 \cdot \frac{1}{n}+o\left(1-\frac{1}{n}\right)=\frac{1}{n}
\end{aligned}
$$

Also note:

$$
\begin{aligned}
& \text { - } E\left[x_{i j}^{2}\right]=1^{2} \cdot \frac{1}{n}+o^{2}\left(1-\frac{1}{n}\right)=\frac{1}{n} \\
& \text { - } E\left[x_{i j} X_{k j}\right]=E\left[x_{i j}\right] \cdot E\left[x_{k j}\right]=\frac{1}{n^{2}} \quad \text { [inde pendence] }
\end{aligned}
$$

Let $l_{j}=$ length of list $j \quad l_{j}=\sum_{i=1}^{n} x_{i j}$
Expected running time $=$

$$
\theta(n)+\theta\left(E\left[\sum_{j=0}^{n-1} l_{j}^{2}\right]\right)=\theta(n)+\theta\left(n E\left[l_{j}^{2}\right]\right)
$$

$$
\begin{aligned}
E\left[l_{j}^{2}\right] & =\underbrace{E[(\overbrace{x_{1 j}+x_{2 j}+\cdots+x_{n j}}) \overbrace{\left(x_{1 j}+x_{i j}+\cdots+x_{n j}\right)}^{e_{j}}}_{n} \begin{aligned}
E\left[x_{1 j}^{2}\right]+\cdots+E\left[x_{n j}^{2}\right]
\end{aligned} \\
& +\underbrace{E\left[x_{1 j} x_{2 j}\right]+\cdots \cdots+E\left[x_{n j} x_{n+j}\right]}_{n(n-1)} \\
& =n \frac{1}{n}+n(n-1) \frac{1}{n^{2}}=1+\frac{n-1}{n}<2
\end{aligned}
$$

Bucket Sort nuns in $\theta(n)+O(n)=\theta(n)$

