
Sorting in linear time
-

•
Assume elements in AG . . . n] are distinct pos . integers

•
Consider the following algorithm .

for i ← I to n
BEACID ← A Ei]

example: A :I¥4L
is

B : E.IE#l9lDgarbage
• kind of sorted ! in linear time !!
• Counting sort achieves a similar effect with a little
more sophistication .

But why were we able to sort in linear time ?

÷÷÷÷÷÷c7
A comparison based sorting algorithm runs in

r Cnlogn) time .

Decision tree proof .

Insertion sort M¥1 n=3

b④
Eyes
④ ④
if Yes Yo Yes

a.be beat c④
Yo Yes my yes

a
, qb Gal b b

,
c
,
a cab, as

Every comparison based alg . can be modeled as a binary
decision tree with n ! leaves

leaves f 2h ⇒ n ! I 2h ⇒ h> logan!
h=RCu6gn)

Counting sort (A , B , n, K) elements C- {91,2, - ok }

for it o to K Initialize Count
do Eli] ← o

for ji← I to n

do c[ACID ← CEASED -11 Count how many AED 's Running time
*
d! Ii; gig + car - is ⇒ car. # dem si QCnffor je n downto 1 Linear if
do BECLACJTI]← Acj] * Place correctly k= (n)

CCAG'D ← CEASED - 1 and decrease count

observation :P : correct position of Afj] = # elements kAfj]= CEASED
observation 2 : Last loop makes counting sort stable .

Stable : elements with same value preserve their original order

Radix sort (Aid) * Assumed digits
for it 1 to d

do stable sort A ou digit i

Example :
- 326 690 704 326

453 751 608 435

608 453 326) 453

835 704 835 608

as , q, z, ggo

435 435 751 704

704 326 453✓ 751

690 608 690 835

1-1-1

Running time :-O @Chetty)
sorted

d passes each ①Cutty time .

b bits
-

-

rbits

* passes : I bit
time per pass : ht I

Total time : O (n + I))
How to choose r ? let re logan ⇒ higby

we get a (b Fen)
If our largest number is 0(nd), where d is const .
we need b -- O@ leg n) bits to represent the numbers

Running time = 0 Cdn) (linear] .

Bucket sort
-

• Elements in ACI . - - n] are uniformly distributed in [0,1)
• Divide them into n buckets using B[on . - n - I]

• map Ali] to bucket Ln . ACID (bucket = list)

(this is some sort of Hashing , we look at Hashing
in more detail later)

Bucket sort (Ain)
for i ← I to n

do insert Aci] into list B [Ln .ACID]
for i← D to n- I

do sort list BED using insertion sort
concatenate BED ,BED , - - - , Bcn-D if Afi) SAG]
return concatenated lists

nA[i]fnAED

Exampled:
p °

N> to I

% are .

as TI 3

935, TX 4

8756 FEI 5

0.7 = 6

Egg ate a

← 8

ATE 9

xij = { I ith element maps to bucket j

o otherwise

• E[Xij] = I . In + 0(I - th) = In
Also note :

•
E[xij
'

] = I? In + 024 - la) = In

• E [Xijxkj] = E [Xij] . E[Xkj] = the [independence]
n

Let dj = length of bit j ej= Exij
Expected running time =

i"

⑦Cult OCE 423) = OCH ⑦ Cn El)

rein I
Efdj'] = E ((Kj +Xzjt - - - + Xnj)(Xijtxzjtn . - +Xnj))

ELK;] + + E[XnjJ
-

n

t E[Xijxzj] + - - - - - t E [Xnj Xnij]
-

rich - i)

= n Int n (n - 1) at = It n÷ S2

Bucket sort runs in Acn) + Ocn) = Acn)

