
Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

c© Copyright 2024 Saad Mneimneh

It’s illegal to upload this document or any sort of

reproduction of it to any third party website

Algorithms

Homework 1

Saad Mneimneh

Computer Science

Hunter College and Graduate Center of CUNY

Problem 1: Selection Sort
(a) Write a pseudocode for Selection sort, which in iteration i, finds the index
k of the smallest element in A[i . . . n], and swaps A[i] and A[k]. Make sure
you have two nested loops as in the case for Insertion Sort illustrated in class.

(b) Annotate your pseudocode with the number of times each line is exe-
cuted, and figure out the running time as a function of n, the length of the
array. Confirm that whether the array is sorted or not, the running time of
Selection Sort remains quadratic in n.

Note: This is essentially similar to the exercise we did in class for Insertion
Sort. It’s a little tedious in nature, but if you approach it systematically, it
is not too hard to handle.

Problem 2: Another look at Mergesort
For simplicity, we can think of n and k as powers of 2 in this problem, where
n ≥ k.

Assume there is a “magical” data structure that can support the following
operations:

• insert an element

• extract the smallest element

Assume further that each of the operations above takes O(1) time (this
means constant time), independent of the number of elements in the struc-
ture. However, the structure cannot grow beyond k elements, for some
constant k.



Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

We are also given an array of n elements that we would like to sort.

(a) Revisit the base case of Mergesort, which is now encountered when the
size of a sub-problem is k. Describe how you can benefit from the above data
structure to obtain a running time of Θ(n log2

n
k ) for Mergesort. Illustrate

with a recursion tree argument.

(b) Consider a modified version of Mergesort in which we divide a problem
of size n into k sub-problems of size n/k each (as opposed to simply 2 sub-
problems of size n/2 each).

• Describe how we can perform the merging of k sorted sub-problems
in Θ(n) time using the “magical” data structure (in clear English no
need for a pseudocode).

• Write the pseudocode for this version of Mergesort (use the merge
function on k arrays as a subroutine, no need to actually spell it out
in pseudocode). Again, the base case is when the size becomes k.

• Illustrate the recursive tree structure and find the running time as a
function of n and k.


