N (© Copyright 2024 Saad Mneimneh !!!
It’s illegal to upload this document on any third
party website
Algorithms
Homework 10

Saad Mneimneh
Computer Science
Hunter College of CUNY

Problem 1: Prim’s and Dijkstra’s algorithms (Optional coding
exercise in C++)

The purpose of this problem is to create a basic class structure for a graph
and implement Prim’s and Dijkstra’s algorithms (they are almost the same).
Although this makes the problem simply a copy of some algorithm into code
without further intervention or thought, it should give a good idea about
how to handle graphs when it comesto C++ code and its STL. Keep in
mind that the approach outlined here is not unique.

A minheap implementation has been provided for you in minheap.h and
minheap.cpp. The entries in the heap are pairs. For the purpose of this
problem, we assume that the first part of the pair is an integer (the key),
and the second part is a pointer to a vertex. An appropriate instantiation
of the template has been made in minheap.cpp. The vertex object in turn
will have an integer index for its position in the heap. The heap has been
implemented to update that index, so you do not need to maintain it your-
self.

Here’s the “architecture” behind the class structure for graph. The code is
given in graph.h, graph.cpp, minheap.h, minheap.cpp, and graph_main.
cpp (with a simple main function) (the file graph_main2.cpp is an alterna-
tive implementation that creates the two graphs we have seen in lectures).



i
sirrs"]
g
-g :] Verbex ¥ pareat

bool extracted.

Each vertex is identified by its name, which is a string object. The graph
maintains a hash table of all the strings. An entry in the hash table is (as
usual) a pair. The first part of the pair is, therefore, the-string. The second
part of the pair is the vertex object. Each vertex has a vector of edges, and
an edge defines a destination vertex (by its name) and a weight (an integer).

For instance, to obtain a vertex for a given name, one could do the following;:
vertex& v = g.vertices[name];

or if x is a pair in vertices

vertex& v = x.second;

and use v.adj to obtain the list of edges for that vertex.

Furthermore, each vertex has three additional attributes: key, which is an
integer, parent, which is a pointer to a vertex, and extracted, which is
a bool. These are useful for Prim’s and Dijkstra’s algorithms. Finally, as
mentioned earlier, the attribute index give the vertex position in the min-
heap (for the decrease_key operation).

(a) Familiarize yourself with the code, then compile the program and run
it. The functions to generate and output the graph have been implemented
for convenience. The vertices will have names a, ... , z, aa, ..., az, ba, ...,
bz, ...

(b) Add two member functions in graph.

void add_vertex(const string& s);
void add_edge(const string& s, const string& t, int w);

The two functions don’t need to make any kind of checks; for instance,
whether a vertex or an edge already exists. However, to add an edge, you
must check whether the graph is undirected or directed. If undirected, you
have to add the edge in both directions. The code in graph_main2.cpp



creates two specific graphs using these functions.

(c) Implement the graph member function MST (Minimum Spanning Tree)
using Prim’s algorithm.

(d) Implement the graph member function SSSP (Single Source Shortest
Path) using Dijkstra’s algorithm.

In both cases, think about how you should initialize the vertex keys to “in-
finity”. When done with the implementation, you can use graph_main?2.cpp
to check whether your MST and SSSP work correctly. You can also gen-
erate a random small graph in graph_main.cpp, say with 5 to 10 vertices,
and test your code (to output the result, you can use the graph member
function lastResult (cout) to output the parent pointers (recall that both
algorithms set parent pointers to encode the MST and the SSSP, respec-
tively). You can follow the example of graph_main2.cpp. For Prim’s algo-
rithm, generate an undirected graph and for Dijkstra’s algorithm, try both
directed and undirected graphs. This can be done by a Boolean parameter
in the generate function (the default is for undirected).

Problem 2

Prove using a cut-and-paste argument that a minimum spanning tree, not
only minimizes the total weight, but also minimizes the maximum-weight
edge.

Problem 3

We have n chess players, We also have m matches that are pre-determined.
Each match is between two players. In a match, and in addition to the
rules of chess, one player must wear a blue shirt, and the other a red shirt.
Players cannot change shirts during the tournament. Describe a linear time
algorithm O(n 4+ m) that assigns the shirt colors to the players such that
every match will comply to the color rule. If that’s not possible, your algo-
rithm should also indicate that. For example, if (A, B), (B,C), and (A, C)
are three matches among players A, B, and C, then you cannot assign the
shirt colors.



Problem 4 (this is a known classical setting)

You have a lot of foreign currency that you want to convert to US dollars
through a series of currency trades, so as to maximize the amount of dollars
you end up with.

Assume you have n currencies and rates r; ; of exchange between currency
and currency j. Assume also that going around any directed cycle of trades
doesn’t give you profit. Describe a polynomial time algorithm to figure out
the best sequence of currency exchanges to maximize your US dollar amount.

Problem 5
Given a graph that is a DAG, design an efficient algorithm that finds if there
is a vertex u such that every vertex is reachable from w.



