© Copyright 2024 Saad Mneimneh It's illegal to upload this document on any third party website Algorithms Homework 2

Saad Mneimneh Computer Science Hunter College of CUNY

Problem 1

Consider the following scenarios, involving unsorted arrays:

- An array A contains n elements, all identical and equal to x, except k of them which are equal to $y \neq x$. Assume $n \geq 2k + 1$ and $k \geq 1$. We would like to find the values of x and y in an efficient way, using an oracle who, given two integers a and b can find $\sum_{i=a}^{b} A[i]$ in O(1) time. Describe the most efficient algorithm for this task.
- For the scenario above, find i such that A[i] = y. Describe your algorithm and analyze its running time.
- An array A is not sorted but satisfies $|A[i] A[i+1]| \le \epsilon$ for all $1 \le i < n$. Given x such that $A[1] \le x \le A[n]$, find an element of A that is within ϵ of x, or determine that no such element exists. What if the condition $A[1] \le x \le A[n]$ does not hold?

Problem 2

2ad

(Optional for fun, you might want to work on a subset of these)

Rank the functions by order of growth, where $f_1(n) = \Omega(f_2(n)), f_2(n) = \Omega(f_3(n)), \ldots, f_{29}(n) = \Omega(f_{30}(n))$. Use Θ instead of Ω if $f_i(n) = \Theta(f_{i+1}(n))$. Note that $\log^* n$ is the number of times the logarithm function must be applied until the result is less or equal to 1.

2^{2n} $n^{2 \lg \lg n} n^2 + 2^{100} n$ n^n n^2 |n| $n^{\log_8 n}$ $(\frac{2}{3})^n$ 100^{100} $(\frac{3}{2})^n$ $(1/n)^{1/\lg n}$ $(\lg n)!$ $2^{\lg^* n}$ $n2^n$ $\ln \ln n$ 3(n!) $\ln n$ 1 $(\lg n)^{\lg n}$ $\sum_{k=1}^{n} k (n+1)!$ $2^{\lg n}$ e^n $\sqrt{\lg n}$ $2^{2^{n+1}}$ $\lg(\lg^* n) \quad \lg^*(\lg n)$ 2^n $n \lg n$ n

Hint: Sometimes to compare two functions, it helps to compare their logarithms.

Problem 3

Consider the following weird recurrence we saw in class:

$$T(n) = 4T(n/2) + \Theta(n^2/\log n)$$

(a) Show that $T(n) = O(n^2 \log n)$ and that $T(n) = \Omega(n^2)$.

(b) Based on the above, make a guess for $T(n) = \Theta(n^2 \log \log n)$ and prove it using the substitution method.

(c) Using the fact that $1+1/2+1/3+\ldots+1/n = \Theta(\log n)$, use the recursive tree method to show that $T(n) = \Theta(n^2 \log \log n)$.

Problem 4

Give asymptotic upper and lower bounds for T(n) which are as tight as possible. Assume that T(n) is constant for $n \leq n_0$, where n_0 is a constant. For most of these, you can use the Master method. If not, find other ways such as guessing the answer and verifying it using the substitution method.

(a)
$$T(n) = 6T(n/3) + n^3$$

(b) $T(n) = 6T(n/3) + n$
(c) $T(n) = 9T(n/3) + n^2$
(d) $T(n) = 8T(n/2) + n^3 \lg$
(e) $T(n) = 10T(n/3) + n^2$
(f) $T(n) = T(n/3) + 2T(n/3)$

(d)
$$T(n) = 8T(n/2) + n^3 \lg^2 n$$

(e)
$$T(n) = 10T(n/3) + n^2\sqrt{n}$$

(f) T(n) = T(n/3) + 2T(n/4) + n

(g) $T(n) = T(n^{1/3}) + \lg n$ *Hint*: change of variable.

(h) $T(n) = 3T(n-1) + n^3$ *Hint*: Guess from recursive tree and verify, or work directly with a sum.

(i) $T(n) = T(\lg n) + 1$ *Hint*: Review the definition of log^{*}, and verify your guess by substitution method.

fo Post

(j) $T(n) = T(n/4) + \sqrt{n}$

(k) $T(n) = T(n/2 + \sqrt{n}) + 1$

estimation of the second secon *Hint*: use the idea of lower and upper bounding this by two recurrences that