
Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

c© Copyright 2024 Saad Mneimneh

It’s illegal to upload this document on any third

party website

Algorithms

Homework 2

Saad Mneimneh

Computer Science

Hunter College of CUNY

Problem 1
Consider the following scenarios, involving unsorted arrays:

• An array A contains n elements, all identical and equal to x, except
k of them which are equal to y 6= x. Assume n ≥ 2k + 1 and k ≥ 1.
We would like to find the values of x and y in an efficient way, using
an oracle who, given two integers a and b can find

∑b
i=aA[i] in O(1)

time. Describe the most efficient algorithm for this task.

• For the scenario above, find i such that A[i] = y. Describe your
algorithm and analyze its running time.

• An array A is not sorted but satisfies |A[i] − A[i + 1]| ≤ ε for all
1 ≤ i < n. Given x such that A[1] ≤ x ≤ A[n], find an element of A
that is within ε of x, or determine that no such element exists. What
if the condition A[1] ≤ x ≤ A[n] does not hold?

Problem 2
(Optional for fun, you might want to work on a subset of these)

Rank the functions by order of growth, where f1(n) = Ω(f2(n)), f2(n) =
Ω(f3(n)), . . . , f29(n) = Ω(f30(n)). Use Θ instead of Ω if fi(n) = Θ(fi+1(n)).
Note that log∗ n is the number of times the logarithm function must be
applied until the result is less or equal to 1.

Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
stn2 n2 lg lgn n2 + 2100n bnc nn 22n

(32)n (23)n nlog8 n (lg n)! 100100 (1/n)1/ lgn

ln lnn 2lg
∗ n n2n 3(n!) lnn 1

2lgn (lg n)lgn en
∑n

k=1 k (n+ 1)!
√

lg n

lg(lg∗ n) lg∗(lg n) n 2n n lg n 22
n+1

Hint: Sometimes to compare two functions, it helps to compare their loga-
rithms.

Problem 3
Consider the following weird recurrence we saw in class:

T (n) = 4T (n/2) + Θ(n2/ log n)

(a) Show that T (n) = O(n2 log n) and that T (n) = Ω(n2).

(b) Based on the above, make a guess for T (n) = Θ(n2 log logn) and prove
it using the substitution method.

(c) Using the fact that 1+1/2+1/3+ . . .+1/n = Θ(log n), use the recursive
tree method to show that T (n) = Θ(n2 log logn).

Problem 4
Give asymptotic upper and lower bounds for T (n) which are as tight as
possible. Assume that T (n) is constant for n ≤ n0, where n0 is a constant.
For most of these, you can use the Master method. If not, find other ways
such as guessing the answer and verifying it using the substitution method.

(a) T (n) = 6T (n/3) + n3

(b) T (n) = 6T (n/3) + n

(c) T (n) = 9T (n/3) + n2

(d) T (n) = 8T (n/2) + n3 lg2 n

(e) T (n) = 10T (n/3) + n2
√
n

(f) T (n) = T (n/3) + 2T (n/4) + n

Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

(g) T (n) = T (n1/3) + lg n
Hint: change of variable.

(h) T (n) = 3T (n− 1) + n3

Hint: Guess from recursive tree and verify, or work directly with a sum.

(i) T (n) = T (lg n) + 1
Hint: Review the definition of log∗, and verify your guess by substitution
method.

(j) T (n) = T (n/4) +
√
n

(k) T (n) = T (n/2 +
√
n) + 1

Hint: use the idea of lower and upper bounding this by two recurrences that
are more friendly.

