© Copyright 2024 Saad Mneimneh It's illegal to upload this document on any third party website CSCI 705 Algorithms Homework 2 Due 2/22/2024

Saad Mneimneh Computer Science Hunter College of CUNY

Readings

Based on Lectures 3, 4, and 5 and their assigned readings (see course website).

Problem 1

(Optional for fun, you might want to work on a subset of these)

Rank the functions by order of growth, where $f_1(n) = \Omega(f_2(n)), f_2(n) = \Omega(f_3(n)), \ldots, f_{29}(n) = \Omega(f_{30}(n))$. Use Θ instead of Ω if $f_i(n) = \Theta(f_{i+1}(n))$. Note that $\log^* n$ is the number of times the logarithm function must be applied until the result is less or equal to 1.

$$n^{2} \qquad n^{2 \lg \lg n} \qquad n^{2} + 2^{100}n \qquad \lfloor n \rfloor \qquad n^{n} \qquad 2^{2n}$$

$$(\frac{3}{2})^{n} \qquad (\frac{2}{3})^{n} \qquad n^{\log_{8}n} \qquad (\lg n)! \qquad 100^{100} \qquad (1/n)^{1/\lg n}$$

$$\ln \ln n \qquad 2^{\lg^{*}n} \qquad n2^{n} \qquad 3(n!) \qquad \ln n \qquad 1$$

$$2^{\lg n} \qquad (\lg n)^{\lg n} \qquad e^{n} \qquad \sum_{k=1}^{n} k \quad (n+1)! \qquad \sqrt{\lg n}$$

$$\lg(\lg^{*}n) \quad \lg^{*}(\lg n) \qquad n \qquad 2^{n} \qquad n \lg n \qquad 2^{2^{n+1}}$$

Hint: Sometimes to compare two functions, it helps to compare their logarithms.

Problem 2: Looking into Quicksort

The analysis of randomized Quicksort relied on that all elements are distinct. We assume that the partitioning algorithm is the one presented in class, where A[r] is the pivot:

 $\begin{aligned} & \operatorname{RandPartition}(A, p, r) \\ & i \leftarrow \operatorname{random}(p, r) \\ & \operatorname{swap} A[r] \leftrightarrow A[i] \\ & \operatorname{return} \operatorname{Partition}(A, p, r) \text{ (see Partition in lecture notes)} \end{aligned}$

- (a) Explain why the assumption about elements being distinct is needed.
- (b) Suggest a way to change the partitioning algorithm to overcome the problem of the multiplicity of elements.
- (c) Assume that elements may not be distinct, but that every element cannot appear more then c times, where c is a constant. How does that affect the asymptotic running time of Quicksort?

Problem 3

Consider the following recurrence:

$$T(n) = 4T(n/2) + \Theta(n^2/\log n)$$

- (a) Show that $T(n) = O(n^2 \log n)$ and that $T(n) = \Omega(n^2)$.
- (b) Based on the above, make a guess for $T(n) = \Theta(n^2 \log \log n)$ and prove it using the substitution method.
- (c) Using the fact that $1+1/2+1/3+\ldots+1/n=\Theta(\log n)$, use the recursive tree method to show that $T(n)=\Theta(n^2\log\log n)$.

Problem 4

Give asymptotic upper and lower bounds for T(n) which are as tight as possible. Assume that T(n) is constant for $n \leq n_0$, where n_0 is a constant. For most of these, you can use the Master method. If not, find other ways such as guessing the answer and verifying it using the substitution method.

(a)
$$T(n) = 6T(n/3) + n^3$$

(b)
$$T(n) = 6T(n/3) + n$$

(c)
$$T(n) = 9T(n/3) + n^2$$

(d)
$$T(n) = 8T(n/2) + n^3 \lg^2 n$$

(e)
$$T(n) = 10T(n/3) + n^2\sqrt{n}$$

(f)
$$T(n) = T(n/3) + 2T(n/4) + n$$

(g)
$$T(n) = T(n^{1/3}) + \lg n$$

Hint: change of variable.

(h)
$$T(n) = 3T(n-1) + n^3$$

Hint: Guess from recursive tree and verify, or work directly with a sum.

(i)
$$T(n) = T(\lg n) + 1$$

 Hint : Review the definition of \log^* , and verify your guess by substitution method.

(j)
$$T(n) = T(n/4) + \sqrt{n}$$

3 and Minelininell

(k)
$$T(n) = T(n/2 + \sqrt{n}) + 1$$

Hint: use the idea of lower and upper bounding this by two recurrences that are more friendly.