
Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

c© Copyright 2024 Saad Mneimneh

It’s illegal to upload this document on any third

party website

CSCI 705 Algorithms

Homework 3

Due 2/29/2024

Saad Mneimneh

Computer Science

Hunter College of CUNY

Readings
Based on Lectures 5, 6, and 7 and their assigned readings (see course web-
site).

Problem 1: Divide an conquer with an oracle
An array contains n ≥ 3 elements, all identical except one, say k (which is
unknown). We would like to find i, such that A[i] = k. Of course, we can
do this in linear time by examining every element. However, we have an
orcale. This oracle can answer questions like the following in O(1) time.

What is

b∑
i=a

A[i]?

Design a divide-and-conquer algorithm that can find i such that A[i] = k
in O(log n) time. Write a recurrence corresponding to your algorithm and
solve it in any way you want to show your time bound.

Problem 2: Nesquiksort
Nesquiksort works exactly like randomized Quicksort, except that after the
array is partitioned around a random pivot, the right partition gets sorted in
O(1) time by a magical bunny. Let T (n) be the running time of Nesquicksort
on an array of size n. As we did with Quicksort, assume that the elements
are distinct and belong to {1, 2, . . . , n}.

(a) Write a recurrence for T (n) similar to the one we had for randomized
Quicksort.



Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

(b) Guess a solution for the recurrence and verify it by the substitution
method. Show your work.

(c) Analyze Nesquicksort using the indicator random variable technique. Let
Xij be an indicator for the event that i and j are compared. Find E[Xij ],
which is equal to the probability that i and j are compared. Hint: For i and
j to be compared, one of them must be the first to become the pivot among
which set of elements? Once you find E[Xij ], find the expected number of
comparisons.

Problem 3: matching socks
There are n pairs of socks. Each pair has a distinct color. However, the 2n
socks are randomly permuted, with every permutation being equally likely.
To wear socks, we repeatedly try the next sock until we have a matching
pair. How many socks do we expect to try? To answer this question, we
will go through a series of steps.

(a) Show that the number of permutations that do not have any match
within the first i socks is:

n!

(n− i)!
2i(2n− i)!

and based on that, find the probability that there is no match within the
first i socks.

(c) Define the indicator random variable Xi as follows:

Xi =

{
1 if there is no match within the first i socks
0 otherwise

Express the number of trials until we get a match in terms of indicator
random variables, and find the expected number of trials. You might get a
complicated expressions, but that’s ok. Try to make it look like:∑n

i=0 . . .(
2n
n

)
(d) Analyze the result in (c), either experimentally or mathematically to
obtain the asymptotic behavior of the number of trials needed to find a
matching pair of socks. For instance, try to figure out what the numerator
in the above form is for few values of n. In addition, replace the denominator
by factorials and use Stirling’s approximation.



Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

Problem 4: Finding the kth largest element
Given an array of n elements, we are interested in finding the kth largest el-
ement (assume n ≥ k). Obviously, if we sort the array, we can then identify
that element in constant time. Therefore, this strategy based on sorting will
generally require a total of O(n log n) time.

(a) Using a heap structure (think of it as a priority queue), describe how
you can bring down the time complexity of the above task to O(n+k log n).
Note: For large k, this is not better than sorting.

(b) Assume now that we are not interested in determining the exact value
of the kth largest element, but we would like to know if it is greater than
some fixed value v. Describe an algorithm that can answer this question in
O(n + k) time by making use of a smart traversal of a heap.

Note 1: There is a way to find the kth largest element in O(n) time, but this
requires a sophisticated algorithm that we will study next time.

Note 2: The kth largest element can be found repeatedly for any k in O(log n)
time once we build a balanced Binary Search Tree in O(n log n) time. We
will study BST later.

Problem 5: Mergeable heaps (optinal)
Assume that heaps are actually implemented as nearly complete binary trees
(and not arrays). Assume that given a pointer x to a node in the tree, left(x),
right(x), and p(x) return the appropriate pointers. In addition, for a heap
h, root(h) is a pointer to its root. Assume that all functions, such as insert,
extract max, heapify, etc..., are modified to handle the tree representation.

(a) Given two heaps h1 and h2 with n and m nodes respectively, where
n ≥ m, describe in pseudocode how you can merge the two heaps into one
heap in O(log n) time. While your approach is not required to produce a
nearly complete binary tree, it is not supposed to increase the height of the
heap by more than a constant.

(b) Using the fact in part (a), namely that we can merge two tree-based
heaps of size n in O(log n) time, consider the problem of merging k heaps
h1, h2, . . . , hk, each of size n (and for simplicity assume that k is a power of
2). Consider two approaches:

• Sequential merge: We merge h1 and h2, then merge the result with
h3, then merge the result with h4, and so on...

• Pairwise merge: We merge h1 with h2, h3 with h4, ..., and hk−1 with
hk. We recursively repeat the merge on the resulting k/2 heaps.



Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

Compare the two approaches with respect to the height of the final heap
and the time required to produce it. For the running time analysis, try to
express it as a sum that you can easily manipulate.

Note: This problem is designed to help you capture expressions as sums and
bound them.


