
Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

c© Copyright 2024 Saad Mneimneh

It’s illegal to upload this document on any third

party website

CSCI 705 Algorithms

Homework 4

Due 3/8/2024

Saad Mneimneh

Computer Science

Hunter College of CUNY

Readings
Based on Lectures 8 and 9 and their assigned readings. This homework
focuses on doing things in linear time, or finding that we can’t.

Problem 1
Given an array A[1 . . . n] of distinct integers in the range {1, . . . , n4}, and
a target integer t, output all pairs A[i] and A[j] such that A[i] + A[j] = t.
The ideal solution should have O(n) running time.

Problem 2
We have n people standing on n mountain peaks. The following figure shows
an example of these peaks for n = 6.

Each person needs to attempt the next challenge, which is to climb the
higher mountain closest to their current position and to their right.



Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

The n peaks can be represented by an array of numbers (and let’s assume
they are integers); for instance, the array for the above example cab be
A = [2, 5, 1, 6, 3, 4]. The problem becomes as follows: For each index i, find
the smallest index j such that j > i and a[j] > a[i]. If no such j exists,
make j = i (the person stays). For instance, if we imagine another array B,
the answer to all the j’s for this instance would be B = [2, 4, 4, 4, 6, 6].

(a) Show that the straight forward approach in which we check for each i,
every j = i + 1, i + 2, . . . , n, requires Ω(n2) time. Hint: construct an input
that forces the Ω(n2) time.

(b) Find an algorithm that performs the task in O(n) time.

Problem 3
Given an array A[1 . . . n] of numbers, assume that the ith smallest element
is guaranteed to lie somewhere between position i − k and i + k for all
i = 1 . . . n, where k is some fixed constant.

(a) Design an algorithm to sort the array in O(n log k) time.

(b) Show that any algorithm that sorts the array requires Ω(n log k) time.
Hint: Given a sorted array A, think about ways to permute A to satisfy the
above condition, and use a decision tree argument.

Problem 4
Given an array A that is not sorted, we want to find two elements, call them
x and y, that are “close enough”. For instance, consider the average distance
between consecutive elements in the sorted order. This average distance can
be computed as

avgD =
(z2 − z1) + (z3 − z2) + . . . + (zn − zn−1)

n− 1

(but it can also be computed without knowing the sorted order)
So let’s call two elements x and y close enough if |x− y| ≤ avgD. Find two
such elements in linear time. Hint 1: use divide-and-conquer to work with
two balanced subproblems. Hint 2: What can you say about the average
distance in a one of the two subproblems?


