
Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

c© Copyright 2024 Saad Mneimneh

It’s illegal to upload this document on any third

party website

Algorithms

Homework 4

Saad Mneimneh

Computer Science

Hunter College and the Graduate Center of CUNY

Readings
Based on Lectures 7 and 8 and their assigned readings.

Problem 1
Consider an n× n 0-1 matrix X, where each entry Xij is either 0 or 1. We
square the matrix, then sum up each row. In other words, let

A[i] =
n∑

j=1

X2
ij

(a) If each entry in X was chosen independently and uniformly at random,
what is the expected value of A[i] for any given i?

(b) Show that E[maxiA[i]] = Θ(n2), and based on that, what is the ex-
pected running time of counting sort on A?

(c) Describe a fast way to sort the array A.

Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

Problem 2
We have n people standing on n mountain peaks. The following figure shows
an example of these peaks for n = 6.

Each person needs to attempt the next challenge, which is to climb the
higher mountain closest to their current position and to their right.

The n peaks can be represented by an array of numbers (and let’s assume
they are integers); for instance, the array for the above example cab be
A = [2, 5, 1, 6, 3, 4]. The problem becomes as follows: For each index i, find
the smallest index j such that j > i and a[j] > a[i]. If no such j exists,
make j = i (the person stays). For instance, if we imagine another array B,
the answer to all the j’s for this instance would be B = [2, 4, 4, 4, 6, 6].

(a) Show that the straight forward approach in which we check for each i,
every j = i + 1, i + 2, . . . , n, requires Ω(n2) time. Hint: construct an input
that forces the Ω(n2) time.

(b) Find an algorithm that performs the task in O(n) time. Hint: use a
simple data structure.

Problem 3
Given an array A[1 . . . n] of numbers, assume that the ith smallest element is
guaranteed to lie somewhere between position i−k and i+k for all i = 1 . . . n,
where k is some fixed constant. Call this condition: almost sorted.

(a) Design an algorithm to sort the array in O(n log k) time.

(b) Show that any algorithm that sorts an almost sorted array requires
Ω(n log k) time. Hint: think about all possible permutations of (1, 2, . . . , n)
that satisfy the almost sorted condition, and use a decision tree argument.

Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

Problem 4
Given an array A that is not sorted, we want to find two elements, call them
x and y, that are “close enough”. For instance, consider the average distance
between consecutive elements in the sorted order z1, z2, . . . , zn. This average
distance can be computed as

avgD =
(z2 − z1) + (z3 − z2) + . . . + (zn − zn−1)

n− 1

(but it can also be computed without knowing the sorted order)
So let’s call two elements x and y close enough if |x− y| ≤ avgD. Find two
such elements in linear time. Hint 1: use divide-and-conquer to work with
two balanced subproblems. Hint 2: What can you say about the average
distance in a one of the two subproblems?

