(© Copyright 2024 Saad Mneimneh
[t’s illegal to upload this document on any third
party website
CSCI 705 Algorithms
Homework 4
Due 3/8/2024

Saad Mneimneh
Computer Science
Hunter College of CUNY

Readings
Based on Lectures 8 and 9 and their assigned readings. This homework
focuses on doing things in linear time, or finding that we can’t.

Problem 1

Given an array A[l...n] of distinct integers in the range {1,...,n*}, and
a target integer ¢, output all pairs A[i] and A[j] such that A[i] + A[j] = t.
The ideal solution should have O(n) running time.

Problem 2
We have n people standing on n mountain peaks. The following figure shows
an example of these peaks for n = 6.

_—

This way...

Each person needs to attempt the next challenge, which is to climb the
higher mountain closest to their current position and to their right.

The n peaks can be represented by an array of numbers (and let’s assume
they are integers); for instance, the array for the above example cab be
A =12,5,1,6,3,4]. The problem becomes as follows: For each index i, find
the smallest index j such that j > ¢ and a[j] > a[i]. If no such j exists,
make j =i (the person stays). For instance, if we imagine another array B,
the answer to all the j’s for this instance would be B = [2,4,4, 4,6, 6].

(a) Show that the straight forward approach in which we check for each ¢,
every j =1+ 1,9+ 2,...,n, requires Q(n2) time. Hint: construct an input
that forces the Q(n?) time.

(b) Find an algorithm that performs the task in O(n) time.

Problem 3

Given an array A[l...n] of numbers, assume that the i'® smallest element
is guaranteed to lie somewhere between position ¢ — k and ¢ 4+ k for all
1 =1...n, where k is some fixed constant.

(a) Design an algorithm to sort the array in O(nlogk) time.

(b) Show that any algorithm that sorts the array requires Q(nlogk) time.
Hint: Given a sorted array A, think about ways to permute A to satisfy the
above condition, and use a decision tree argument.

Problem 4

Given an array A that is not-sorted, we want to find two elements, call them
x and y, that are “close enough”. For instance, consider the average distance
between consecutive elements in the sorted order. This average distance can
be computed as

(22 —21) + (23 —22) + ... + (20 — 20—1)
n—1

avgD =

(but it can also be computed without knowing the sorted order)

So let’s call two elements = and y close enough if |z — y| < avgD. Find two
such elements in linear time. Hint 1: use divide-and-conquer to work with
two balanced subproblems. Hint 2: What can you say about the average
distance in a one of the two subproblems?

