(C) Copyright 2024 Saad Mneimneh It's illegal to upload this document on any third party website
 CSCI 705 Algorithms
 Homework 4
 Due 3/8/2024
 Saad Mneimneh
 Computer Science
 Hunter College of CUNY

Readings

Based on Lectures 8 and 9 and their assigned readings. This homework focuses on doing things in linear time, or finding that we can't.

Problem 1

Given an array $A[1 \ldots n]$ of distinct integers in the range $\left\{1, \ldots, n^{4}\right\}$, and a target integer t, output all pairs $A[i]$ and $A[j]$ such that $A[i]+A[j]=t$. The ideal solution should have $O(n)$ running time.

Problem 2

We have n people standing on n mountain peaks. The following figure shows an example of these peaks for $n=6$.

Each person needs to attempt the next challenge, which is to climb the higher mountain closest to their current position and to their right.

The n peaks can be represented by an array of numbers (and let's assume they are integers); for instance, the array for the above example cab be $A=[2,5,1,6,3,4]$. The problem becomes as follows: For each index i, find the smallest index j such that $j>i$ and $a[j]>a[i]$. If no such j exists, make $j=i$ (the person stays). For instance, if we imagine another array B, the answer to all the j 's for this instance would be $B=[2,4,4,4,6,6]$.
(a) Show that the straight forward approach in which we check for each i, every $j=i+1, i+2, \ldots, n$, requires $\Omega\left(n^{2}\right)$ time. Hint: construct an input that forces the $\Omega\left(n^{2}\right)$ time.
(b) Find an algorithm that performs the task in $O(n)$ time.

Problem 3

Given an array $A[1 \ldots n]$ of numbers, assume that the $i_{\circ}^{\text {th }}$ smallest element is guaranteed to lie somewhere between position $i-k$ and $i+k$ for all $i=1 \ldots n$, where k is some fixed constant.
(a) Design an algorithm to sort the array in $O(n \log k)$ time.
(b) Show that any algorithm that sorts the array requires $\Omega(n \log k)$ time. Hint: Given a sorted array A, think about ways to permute A to satisfy the above condition, and use a decision tree argument.

Problem 4

Given an array A that is not sorted, we want to find two elements, call them x and y, that are "close enough". For instance, consider the average distance between consecutive elements in the sorted order. This average distance can be computed as

$$
\arg D=\frac{\left(z_{2}-z_{1}\right)+\left(z_{3}-z_{2}\right)+\ldots+\left(z_{n}-z_{n-1}\right)}{n-1}
$$

(but it can also be computed without knowing the sorted order) So let's call two elements x and y close enough if $|x-y| \leq a v g D$. Find two such elements in linear time. Hint 1: use divide-and-conquer to work with two balanced subproblems. Hint 2: What can you say about the average distance in a one of the two subproblems?

