
Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

c© Copyright 2024 Saad Mneimneh

It’s illegal to upload this document on any third

party website

CSCI 705 Algorithms

Homework 5

Due 3/22/2024

Saad Mneimneh

Computer Science

Hunter College of CUNY

Readings
Based on Hashing, Binary Search Trees, and Red-Black Trees.

Problem 1
An array of size n has a majority element x iff x appears more than n/2
times in A. Of course, not every array has a majority element.

(a) Describe how you can use hashing to find the majority element in ex-
pected O(n) time.

Note: If elements are shown one at a time, you can easily modify your algo-
rithm to provide the majority element (or declare that it does not exist) in
expected O(1) time upon seeing every new element.

(b) Describe an O(n) time algorithm to do the same.

Problem 2

(a) Design an algorithm that converts a binary search tree on n elements
into a min-heap containing the same elements in Θ(n) time.

(b) (Optional) Can you do the same inplace, i.e. convert the tree into a
min-heap in Θ(n) without using any extra storage. Here adopt the standard
representation of a tree for the heap with the three left, right, and parent
pointers. For this, you need to have a precise pseudocode to show how you
will utilize existing pointers in the tree.

Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

(c) Can you reverse the process, i.e. convert a min-heap containing n ele-
ments into a binary search tree on the same elements in Θ(n) time? How,
or why not?

Problem 3

(a) Place the keys {1, 2, 3, 4, 5, 6, 7} in the following binary search tree.

(b) Color the nodes red and black to make the tree a valid red-black tree.

(c) Perform a Right-Rotate at the node containing key 6. Draw the binary
search tree that results and label the tree with the same keys. Can you color
the nodes to make the tree a valid red-black tree? Explain.

Problem 4 (Optional)
This came up in class discussion. Consider a hash function for strings where

h(s) =
(n−1∑

i=0

s[i](m + 1)i
)

mod m

where s is a string of length n, and s[i] is its ith character interpreted as
an integer in [0,m]. Prove that swapping two characters in s produces the
same hash value. Hint: Use the binomial theorem.

Problem 5 (Understand a little more the math of universal hashing)
In the analysis of hash tables, we often make the assumption that the hash
function has the simple uniform hashing property: This means that given a
key k, P [h(k) = i] = 1/m for every k and i = 0 . . .m − 1, independently
of where any other element hashes to.

Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

(a) Show that a universal hash family does not imply simple uniform hash-
ing. Hint: You can show this by an example of a universal hash family that
always maps a given key to the same value.

We say that a family H of hash functions is 2-universal if for every pair of
different keys (x, y), and for every h chosen at random from H, (h(x), h(y))
is equally likely to be any of the m2 possible values (0, 0), . . . , (m−1,m−1).

(b) Show that a 2-universal family is universal and has the simple uni-
form hashing property. (Therefore, a universal family is not necessarily
2-universal.)

Hint: Show P (h(x) = h(y)) = 1/m and that P (h(k) = k) = 1/m. Finally,
find P (h(x) = k|h(y) = `).

(c) Let m be prime. Suppose we modify the universal hash family we saw
in class in the following way (where each key is divided into r chunks, each
of which is in [0,m− 1]):

h(x0, . . . , xr−1) =
(
b +

r−1∑
i=0

aixi

)
mod m

and (a0, . . . , ar−1, b) are chosen at random in [0,m−1]. Show that this fam-
ily is 2-universal. Hint: Assume h(x) = k and h(y) = ` and subtract them
to perform an analysis similar to the one we did in class.

(d) Suppose H is universal, and we choose a hash function randomly from
H and keep it secret. Suppose that an adversary who knows H learned the
value of h(x). Show that the adversary can now find a y 6= x such that
h(x) = h(y) with probability greater than 1/m. Show this cannot be the
case for a 2-universal hash family.

Hint: The way I approached this problem for universal hashing is by con-
sidering three keys x, y, and z that hash into {0, 1} (so m = 2), and con-
structing a universal hash family with 2 functions h1 and h2 such that the
family is universal. Then explored what choices the adversary can make.
For 2-universal hashing, one should be able to argue that the adversary’s
chance is at most 1/m by looking for P (h(x) = h(y)|h(x) = k).

