
Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

!!! c© Copyright 2020-2025 Saad Mneimneh !!!

It’s illegal to upload this document on any third

party website

Algorithms

Homework 7

Saad Mneimneh

Computer Science

Hunter College of CUNY

This homework covers amortized analysis. It might be a little harder than
usual because it requires some careful thought about how to achieve the
amortized time. I provided hints, but still... Next homework will be about
graphs.

Problem 1: A bulk stack
Consider a stack that stores items that are collections of m elements. So one
could only push and pop a collection at a time. For this bulk stack, we will
call the operations Bush and Bop. Using the bulk stack as an underlying
structure, we want to implement a regular stack that can Push and Pop
individual elements.

Given a collection C that is on the top of the stack, to Push an element we
can Bop C, add the element to it, and Bush it back on the stack. Similarly,
to Pop an element, we can Bop C, delete it’s top element, and Bush it back
on the stack. We assume:

• we can check if the bulk stack is empty

• a collection C itself acts like a stack, so we can add and remove to/from
its “top” (Push and Pop) in O(1) time

• we can determine the number of elements in a collection C (which is
at least 0 and at most m)

• Bush and Bop take O(m) time



Sa
ad
M
ne
im
ne
h
(c
) C
op
yr
ig
ht
M
at
er
ia
l -
Ill
eg
al
To
Po
st

(a) One can keep a copy of the top collection “active” while performing
Push and Pop operations and refraining from using Bush and Bop until
Push sees a full collection or Pop sees an empty collection. Describe a se-
quence of Push and Pop operations that still has an average of O(m) time
per operation.

(b) Describe a mechanism to achieve O(1) amortized time per Push/Pop
operation by keeping two active collections. Do the analysis using the ag-
gregate method, the accounting method, and the potential method.

Hint: For the potential method, consider the distance from the top of the
stack to either the bottom of the top collection or the top of the bottom
collection, whichever is smaller. So this distance is zero if the top of the
stack is the bottom of the top collection or the top of the bottom collection.
The distance is at most m− 1.

Problem 2: Queue with IncreaseKey and Maximum
Consider a FIFO queue Q that supports the following operations:

• Insert(Q, x): adds x to the queue

• Extract(Q): removes the earliest inserted item

• IncreaseKey(Q, k): increases key[x] by k for every x ∈ Q

(a) Describe a way to implement all these operations in O(1) time each.

(b) Assume now we want to add the following operation:

• Maximum(Q): simply returns the object x with largest key in Q.

Describe a way to implement all four operations in O(1) amortized time.
Hint: Maintain in another structure a chronological list of non-increasing
keys. These keys act as successive maximums.


