
Chi - Squared as conjugate Prior
-

• Consider Xi Id n Poisson ( d) i. i. d

In other words Pfxi=k ( d) = dke
K !

•
Assume the following prior on d .
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what does that mean ?
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The Normal case
#

• Suppose Xi lo' - N(M, o') are i - i. d Conditioned on r)
and µ is known .

•
We can show that sofa r XI is a conjugate prior .
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Interpretation of k and so
~

:

•
Since k is added to n ,

K can be interpreted as
the number of

"
observations " that led to the prior

• So is the sum Eci-MJ where Xi's are the K

observations
.



Example : 9 18 21 26 14
-

18 22 27 IT 19 µ=22[J
22 29 15 19 24

30 16 20 24 32 n - 20 5=664

Without any prior knowledge K - 8=0
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What kind of prior is soy - Xia when so - K - o ?
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And yet , this prior resulted in a valid posterior .



Connection to classical approach .-
Consider the random variable XII / o-r N(oil)
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If Xi - - - X n are independent conditioned on 02, then
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We got what we knew already !



What if both µ and Tare unknown ?
-

Xi / µ , o' n N (M , T) are i. i. d conditioned onµ and 02

Define : I = i€Xi/n (average) ECI] =p
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The t - distribution (student)
-

• Z - N (oil )

• V r X. 2k

•
Z and V are independent
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Observation : when k is large, this is almost Normal .
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Fisher proved the following for Normal samples
• (n- 1) sypz N XI- i

• I and 5 are independent (only Normal satisfies this)
• (we know) Ijf n N (oil)
so Is%- n tn . , (t - distributed with degree n -D

Remark : The text in Note 8 contains proofs for the first
two facts when n= 2 .



Two teams revisited (unknown T)
-
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[ Note 8 has an example]


