The t-distribution (student)

- $Z \sim N(0,1)$
- $V \sim X_{k}^{2}$
- Z and V are independent

Then $t=\frac{z}{\sqrt{V / k}}$ satisfies $f(t) \propto\left(1+\frac{t^{2}}{k}\right)^{-\frac{k+1}{2}}\left[\begin{array}{l}\text { look up } \\ \text { constant }\end{array}\right]$
Observation: when K is large, this is almost Normal.

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}(1+\underbrace{\left.\frac{k+1}{k} \cdot \frac{t^{2}}{k+1}\right)^{-\frac{k+1}{2}}=e^{-t^{2} / 2}}_{\substack{\downarrow \\
1}} \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \rightarrow e^{x} \\
& E[t]=0 \text { if } k>1 \quad \operatorname{Var}[t]= \begin{cases}\frac{k}{k-2} & k>2 \\
\infty & 1<k \leqslant 2\end{cases}
\end{aligned}
$$

Fisher proved the following for Normal samples

- $(n-1) s^{2} / \sigma^{2} \sim \chi_{n-1}^{2} \quad \frac{S}{\sigma^{2}} \sim X_{n-1}^{2}$ where $S=\sum\left(x_{i}-\bar{x}\right)^{2}$
- \bar{x} and s^{2} are independent (only Normal satisfies this)
- (We know) $\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$

So $\frac{\bar{x}-\mu}{s / \sqrt{n}} \sim t_{n-1} \quad(t$-distributed with degree $n-1)$
Remark: The text in Note 8 contains proofs for the first two facts when $n=2$.
(*) This is different than previous definition $S=\sum\left(x_{i}-\mu\right)^{2}$ when μ was known.

Two teams revisited (unknown σ^{2})

$$
\frac{(n-1) s_{x}^{2}}{\sigma_{x}^{2}} \sim x_{n-1}^{2} \quad \frac{(m-1) s_{y}^{2}}{\sigma_{y}^{2}} \sim x_{m-1}^{2}
$$

So $\quad \frac{(n-1) s_{x}^{2}}{\sigma_{x}^{2}}+\frac{(m-1) s_{y}^{2}}{\sigma_{y}^{2}} \sim x_{n+m-2}^{2} \quad\left[\right.$ sum of ind. $\left.x^{2}\right]$
From before $\frac{\bar{x}-\bar{y}-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\sigma_{x}^{2} / n+\sigma_{y / m}^{2}}} \sim N(0,1)$
Assuming $\sigma_{x}^{2}=\sigma_{y}^{2}$ [Though both are unknown], testing $\mu_{x}=\mu_{y}$ we get

$$
\frac{\bar{x}-\bar{y}}{\sqrt{\left(\frac{1}{n}+\frac{1}{m}\right) \frac{(n-1) s_{x}^{2}+(m-1) s_{y}^{2}}{n+m-2}}} \sim t_{n+m-2}
$$

[Note 8 has an example]

Conjugate Prior

$$
\begin{aligned}
& x_{i} \mid \mu, \sigma^{2} \sim N\left(\mu, \sigma^{2}\right) \text { are i.i.d. } \\
& \frac{s_{0}}{\sigma^{2}} \sim x_{k_{0}}^{2} \\
& \mu \mid \sigma^{2} \sim N\left(\beta, \sigma_{n_{0}}^{2}\right)
\end{aligned}
$$

* Making μ \& σ independent does not lead to Conjugate

We want to prove posterior has the same form.

$$
\begin{aligned}
& \left.\frac{S^{\prime}}{\sigma^{2}} \right\rvert\, x_{1} \ldots x_{n} \sim x_{k}^{2} \quad\left(\text { Find } s^{\prime} \text { and } k\right) \\
& \mu \mid \sigma^{2}, x_{1} \ldots x_{n} \sim N\left(\beta^{\prime}, \frac{\sigma^{2}}{n^{\prime}}\right) \quad\left(\text { Find } \beta^{\prime} \text { and } n^{\prime}\right) .
\end{aligned}
$$

First, let's find $\mu \mid \sigma^{2}, x_{1} \ldots x_{n}$

$$
\underbrace{f\left(\mu \mid x_{1} \ldots x_{n}, \sigma^{2}\right)}_{?} \propto \underbrace{f\left(x_{1} \ldots x_{n} \mid \mu, \sigma^{2}\right) \cdot \underbrace{f(\mu \mid}_{\text {Normal }} \sigma^{2})}_{\text {Normal }}
$$

This is the same setting where μ is unknow but σ^{2} known

$$
\begin{aligned}
& \mu \mid \sigma^{2}, x_{1} \ldots x_{n} \sim N\left(\frac{\sigma^{2} \beta / n+\sigma^{2} / n_{0}}{\sigma^{2} / n+\sigma^{2} / n_{0}}, \frac{\sigma^{2} \sigma^{2} / n_{0}}{\sigma^{2}+\sigma^{2} / n_{0}}\right) \\
& \mu \mid \sigma^{2}, x_{1} \ldots x_{n} \sim N\left(\frac{n_{0} \beta+n \bar{x}}{n+n_{0}}, \frac{\sigma^{2}}{n+n_{0}}\right)=N\left(\beta^{\prime}, \frac{\sigma^{2}}{n^{\prime}}\right)
\end{aligned}
$$

- β^{\prime} is weighted average of of and \bar{x}
- $n=$ \# observations
- $n_{0}=$ ""observations" in prior.

What about σ^{2}. Let's start with

$$
\begin{aligned}
f\left(\mu, \frac{1}{\sigma^{2}}\right) & \propto \underbrace{\frac{1}{\sigma} e^{-\frac{n_{0}(\mu-\beta)^{2}}{2 \sigma^{2}}}}_{f\left(\mu / \sigma^{2}\right)} \cdot \underbrace{\left(\frac{1}{\sigma^{2}}\right)^{\frac{k_{0}}{2}-1} e^{-\frac{S_{0}}{2 \sigma^{2}}}}_{f\left(1 / \sigma^{2}\right)} \\
& =\left(\frac{1}{\sigma^{2}}\right)^{\frac{k_{0}+1}{2}-1} e^{-\frac{n_{0}(\mu-\beta)^{2}+S_{0}}{2 \sigma^{2}}}
\end{aligned}
$$

Observe that $f\left(\left.\frac{1}{\sigma^{2}} \right\rvert\, \mu\right) \propto f\left(\mu, \frac{1}{\sigma^{2}}\right)$
so $\left.\frac{S_{0}+n_{0}(\mu-\beta)^{2}}{\sigma^{2}} \right\rvert\, \mu \sim X_{k_{0}+1}^{2} \quad$ (Another way of looking at prior for σ^{2})

Let's find $\left.\frac{1}{\sigma^{2}} \right\rvert\, \mu_{1} x_{1} \ldots x_{n}$

$$
\underbrace{f\left(\left.\frac{1}{r^{2}} \right\rvert\, x_{1} \ldots x_{n}\right.}_{?}, \mu) \propto \underbrace{f\left(x_{1} \ldots x_{n} \mid \sigma^{2}, \mu\right)}_{\text {Normal }} \underbrace{f\left(\left.\frac{1}{\sigma^{2}} \right\rvert\,\right.}_{x^{2}} \mu)
$$

This is similar to the setting where σ^{2} unknown but μ known.

$$
\begin{gathered}
\sum\left(x_{i}-\mu\right)^{2}+S_{0}+n_{0}(\mu-\beta)^{2} \\
\hdashline \sigma^{2}
\end{gathered} \mu, x_{1} \ldots x_{n} \sim \chi_{k_{0}+1+n}^{2}
$$

We showed that the posteriors for $\mu \mid \sigma^{2}$ and $\sigma^{2} \mid \mu$ have the same form as their corresponding prior.

Let's find the unconditional posterior for σ^{2}.

$$
\begin{gathered}
\left.\left.f\left(\left.\frac{1}{\sigma^{2}} \right\rvert\, x_{1} \ldots x_{n}\right)=\int_{-\infty}^{+\infty} f\left(\frac{1}{\sigma^{2}}\right) \mu \right\rvert\, x_{1} \ldots x_{n}\right) d \mu \alpha \int_{\infty-}^{+\infty} f\left(x_{1} \ldots x_{n} \mid \mu, \sigma^{2}\right) f\left(\mu, \frac{1}{\sigma^{2}}\right) d \mu \\
\int_{-\infty}^{+\infty}\left(\frac{1}{\sigma^{2}}\right)^{\frac{k_{0}+n+1}{2}-1} e^{-\frac{\sum\left(x_{i}-\mu\right)^{2}+S_{0}+n_{0}(\mu-\beta)^{2}}{2 \sigma^{2}}} d \mu
\end{gathered}
$$

Note: $\sum\left(x_{i}-\mu\right)^{2}=S+n(\bar{x}-\mu)^{2}$ where $S=\sum\left(x_{i}-\bar{x}\right)^{2}$

$$
\left(\frac{1}{\sigma^{2}}\right)^{\frac{k_{0}+n}{2}-1} e^{-\frac{S+s_{0}}{2 \sigma^{2}} \int_{-\infty}^{\int_{-\infty} \frac{1}{\sigma} e^{-\frac{n(\bar{x}-\mu)^{2}+n_{0}(\mu-\beta)^{2}}{2 \sigma^{2}}}} d \mu}
$$

Posterior for σ^{2} [unconditional]

$$
\frac{s^{\prime}}{\sigma^{2}} \sim x_{k}^{2}
$$

where:

$$
\begin{aligned}
& k=n+k_{0} \\
& \beta^{\prime}=\frac{n_{0} \beta+n \bar{x}}{n+n_{0}} \quad \text { (same } \beta^{\prime} \text { as before) } \\
& n^{\prime}=n_{0}+n \\
& S^{\prime}=S+S_{0}+n_{0} \beta^{2}+n \bar{x}^{2}-n^{\prime} \beta^{\prime 2}
\end{aligned}
$$

Back to μ. What's the unconditional prior?

$$
f(\mu) \propto \int_{0}^{\infty}\left(\frac{1}{\sigma^{2}}\right)^{\frac{k_{0}+1}{2}-1} e^{-\frac{n_{0}(\mu-\beta)^{2}+s_{0}}{2 \sigma^{2}}} d \frac{1}{\sigma^{2}}
$$

Change of variable: $t=\frac{n_{0}(\mu-\beta)^{2}+s_{0}}{2 \sigma^{2}}$

$$
\begin{aligned}
& f(\mu) \propto \int_{0}^{\infty}\left[\frac{2 t}{n_{0}(\mu-\beta)^{2}+s_{0}}\right]^{\frac{k_{0}+1}{2}-1} e^{-t} \frac{2}{n_{0}(\mu-\beta)^{2}+S_{0}} d t \\
& \quad \propto \Gamma\left(\frac{k_{0}+1}{2}\right)\left[n_{0}(\mu-\beta)^{2}+S_{0}\right]^{-\frac{k_{0}+1}{2}} \\
& \quad \propto\left[1+\left(\frac{\mu-\beta}{\sqrt{S_{0} / n_{0} k_{0}}}\right)^{2} / k_{0}\right]^{-\frac{k_{0}+1}{2}} \equiv\left(1+\frac{x^{2}}{k}\right)^{-\frac{k+1}{2}}
\end{aligned}
$$

So $(\mu-\beta) / \sqrt{s_{0} / n_{0} k_{0}} \sim t_{k_{0}}$ in the prior

We automatically conclude that. $\frac{\mu-\beta^{\prime}}{\sqrt{s^{\prime} / n^{\prime} k}} \sim t_{k}$ in the posterior Finally mo PHEW!

Reference Priors

$$
\begin{gathered}
n_{0}=0 \quad S_{0}=0 \quad k_{0}=-1 \\
\left(\beta^{\prime}=\bar{x}, S^{\prime}=S=\sum\left(x_{i}-\bar{x}\right)^{2}, s^{2}=\frac{s}{n-1}\right)
\end{gathered}
$$

we get
prior:

$$
\left.\begin{array}{l}
f\left(\sigma^{2}\right) \propto \frac{1}{\sigma^{2}} \\
f(\mu) \propto 1 \quad \text { (Uniform in }[-\infty, \infty])
\end{array}\right] \text { improper }
$$

Posterior:

$$
\begin{aligned}
& \frac{s}{\sigma^{2}} \sim \chi_{n-1}^{2} \\
& \frac{\mu-\bar{x}}{s / \sqrt{n}} \sim t_{n-1}
\end{aligned}
$$

what we knew

What happens if:

$$
\begin{aligned}
& x_{i} \mid \mu, \sigma^{2} \sim N\left(\mu, \sigma^{2}\right) \\
& \frac{S_{0}}{\sigma^{2}} \sim x_{k_{0}}^{2} \\
& \mu \sim N\left(\beta, \tau^{2}\right)
\end{aligned}
$$

(Semi-Gonjugate prior)
Later

Skip Last page of Note 8.

