Example:

$$
\begin{array}{ll}
A=\{2,4,6\} & S=\{1,2,3,4,5,6\} \\
B=\{3,6\} & \\
C=\{1,2,3,4,5\} & P(C)=5 / 6 \\
P(A)=1 / 2 \quad P(B)=1 / 3 & \text { Uniform Prob. } \\
P(A, B)=1 / 6=P(A) \cdot P(B) \quad(A \& B \text { are independent })
\end{array}
$$

A : event that we get even number
B : event that we get a multiple of 3

$$
\begin{aligned}
& P(A \mid B)=P(A)=\frac{1}{2} \\
& P(A \mid C)=\frac{P(A, C)}{P(C)}=\frac{2 / 6}{5 / 6}=2 / 5 \\
& P(B \mid C)=1 / 6 \\
& P(A, B \mid C)=P(A, B, C) / P(C)=0 \\
& P(A, B \mid C) \neq P(A \mid C) P(B \mid C)
\end{aligned}
$$

Conditioned on $C, A \& B$ are not independent anymore

Independence can be tricky!

- It's possible that A, B, C and pairmise independent, but $P(A, B, C) \neq P(A) P(B) P(C)$
- It's also possible that $P(A, B, C)=P(A) P(B) P(C)$ but the events are not pairwise independent.

K-wise independence:
$A_{1}, A_{2}, \ldots, A_{k}$ are k-wise independent if for every subset $S \subset\{1,2, \ldots, k\}$

$$
P\left(\bigcap_{i \in s} A_{i}\right)=\prod_{i \in s} P\left(A_{i}\right)
$$

When we say events are independent that's what we usually mean.

Coin Example: Assume we toss a coin twice

$$
S=\{H H, H T, T H, T T\}
$$

Assume coin is fair, and tosses ane independent.

$$
P(H H)=P(H) P(H)=\frac{1}{2}-\frac{1}{2}=\frac{1}{4}
$$

Define $A=\{H H, H T, T H\} \quad B=\{H H, T T\}$

$$
\begin{aligned}
& P(A)=3 / 4 \quad P(B)=1 / 2 \quad P(A, B)=1 / 4 \quad P(A, B) \neq P(A) P(B) \\
& P(B \mid A)=1 / 3 \quad P(A \mid B)=1 / 2
\end{aligned}
$$

King's Paradox: The king comes from a family \mathcal{f} two children. What is the prob. that the Kang's sibling is a male?

King's Paradox
There is "implicit"

$$
P(A \mid B)=\frac{1 / 4}{3 / 4}=1 / 3
$$ conditioning in the way the question is framed.

B : There is at least one male
(there is at least one male!)

Another example:

- Pick one of the coins with prob. $\frac{1}{2}$
- Toss coin 3 times.

Question: If we observe more Heads then tails what is the probability that coin is Fain.
A: Coin is Fain

$$
P(A \mid B)=?
$$

B: we see more Heads

$$
\begin{aligned}
B= & \{\underline{\text { FHHH, FHHT, FHTH, FTHH, BHHH\}}}\} \\
A= & \frac{\{\text { FHHH, FHHT}, ~ F H T H}{\text { FHTT FTHH, FTHT, FTTH, FTTT }\}} \\
P(A \mid B)= & \frac{P(A, B)}{P(B)}=\frac{\{1 / 16\}+1 / 16+1 / 16+1 / 16}{1 / 16+1 / 16+1 / 6+1 / 16+\frac{1}{2}}=\frac{1 / 4}{1 / 4+1 / 2}=\frac{1}{3}
\end{aligned}
$$

There is some subtle issues
to be clarified later regarding how I obtained 1/6. (below)

Multiplication Rule for conditioning:

$$
\begin{aligned}
P(A \mid B) & =P(A, B) / P(B) \Rightarrow P(A, B)=P(B) P(A \mid B) \\
P(A, B) & =P(A) \cdot P(B \mid A)
\end{aligned}
$$

What if I have n events:

$$
P\left(A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1}, A_{2}\right) \ldots . P\left(A_{n} \mid A_{1} \ldots A_{n-1}\right)
$$

example for $n=4$:

$$
P\left(A_{1}, A_{2}, A_{3}, A_{4}\right)=P\left(A_{1}\right) \cdot P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1}, A_{2}\right) P\left(A_{4} \mid A_{1}, A_{2}, A_{3}\right)
$$

Independence when conditioned on coin

$$
\begin{aligned}
& \frac{P\left(H_{1} \mid H_{2}, F\right)}{}=\frac{P\left(H_{1}, H_{2}, F\right)}{P\left(H_{2}, F\right)}= \\
& \frac{P(F) P\left(\mathbb{C}, H_{2}, \mid F\right)}{P\left(H_{2} \mid F\right) P(F)}=\frac{P\left(H_{1}, H_{2} \mid F\right)}{P\left(H_{2} \mid F\right)}= \\
& =\frac{P\left(H_{1} \mid F\right) P\left(H_{2} \mid F\right)}{P\left(H_{2} \mid F\right)}=P\left(H_{1} \mid F\right)
\end{aligned}
$$

Law of total probability

A's are

1) exclusive $\operatorname{Ain}_{i} A_{j}=\varnothing$
2) $U A_{i}=S$ (exhaustive)

$$
B=\underbrace{\left(A_{1} \cap B\right)}_{\text {exclusive }} \cup \underbrace{\left(A_{3} \cap B\right)}_{\text {(Ar } \cap B)}
$$

So the A_{s}^{\prime} partition S

$$
\begin{aligned}
P(B)= & P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)+P\left(A_{3} \cap B\right) \\
= & P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+P\left(B \mid A_{3}\right) P\left(A_{3}\right) \\
& P(B)=\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
\end{aligned}
$$

example:

$$
\begin{aligned}
P(H H H) & =P(H H H \mid F) P(F)+P(H H H \mid B) P(B) \\
& =\frac{1}{2} \frac{1}{2} \frac{1}{2} \cdot \frac{1}{2}+1.1 \cdot 1 \cdot \frac{1}{2}=\frac{1}{16}+\frac{1}{2}=9 / 16 .
\end{aligned}
$$

Bayes Rule

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)}
$$

Posterior
(Bayes Rule)

Usual Setting:

- A's are not observable, but they are governed by some probabilistic law eeg. $P\left(A_{i}\right)$ is known (prior)
- B can be observed, we know how B behaves Conditioned on A.

Bates: Given what we observe, what can we say about what we don't know?

