Nested Expectation

$$
E[x]=E[\underbrace{E[x \mid Y=y]}_{\text {as a function of } y}] \text { Using } P(x \mid y=y)
$$

step back a little:

$$
\begin{aligned}
& E[x]=\sum_{x} x P(x=x) \\
& E[x]=\sum_{x} x P(x) \quad \text { [simplified notation] }
\end{aligned}
$$

when it's clear from content.

$$
\begin{gathered}
E[x \mid Y=y]=\sum_{x} x P(x=x \mid Y=y)=\text { function of } y=f(y) \\
E[f(y)]=\sum_{y} f(y) P(y)
\end{gathered}
$$

$$
E[X]=\sum_{x} x p(x)=E[E[x \mid Y=y]]
$$

a little complicated $P(x)=\sum_{y} P(x \mid y=y) P(y)$
An example: Assume X is a geometric R.v. where

$$
P(x=k \mid p)=p(1-p)^{k-1} \quad k \geqslant 1
$$

conditioned on p.
what is $P(x-k)$?

$$
\begin{aligned}
& E[X]=\sum_{K} K P(K) \mid I \text { don't have } P(K) \\
& E[X]=E[\underbrace{E[X \mid P]}_{\text {Geombric }}]=E[1 / P] \\
& P[.25
\end{aligned}
$$

For instance : $\quad P=\left\{\begin{array}{lll}0.25 & 1 / 3 \\ 0.5 & 1 / 3 \\ 0.75 & 1 / 3\end{array}\right.$ (uniform)

$$
E[1 / p]=\sum_{p} 1 / p P(p)=\frac{1}{0.25} \times \frac{1}{3}+\frac{1}{0.5} \times \frac{1}{3}+\frac{1}{0.75} \times \frac{1}{3}=\frac{22}{9}
$$

Side Remark: Expected value of geometric R.V.

$$
E[x]=\sum_{k=1}^{\infty} k p(x=k)=p(1-p)^{k-1}=\frac{p}{1-p} \underbrace{\sum_{k=1}^{\infty} k(1-p)^{k}}_{(1-p) / p^{2}}=\frac{1}{p}
$$

Let's find $P(x=k)$

$$
\begin{gathered}
P(X=k)=\sum_{P} P(X=k \mid P) P(\rho) \\
\sum_{p} P(1-P)^{k-1}\left(\frac{1}{3}\right)=\frac{1}{3}\left[0.25 \times 0.75^{k-1}+0.5 \times 0.5^{k-1}+0.75 \times 0.25^{k-1}\right] \\
E[x]=\sum_{x} x \frac{1}{3}[\ldots . .]
\end{gathered}
$$

Variance:
$\sigma_{x}^{2}=E\left[(X-\underset{\text { mean of } x}{E[x]})^{2}\right] \quad$ positive deviation from the mean Standard deviation σ_{x} is the sort of the above

$$
\begin{aligned}
\sigma_{x}^{2} & =E\left[x^{2}+E[x]^{2}-2 x E[x]\right] \\
& =E\left[x^{2}\right]+E\left[E[x)^{2}\right]-E[2 x E[x]] \\
& =E\left[x^{2}\right]+E[x]^{2}-2 \underbrace{E[x] E[x]}_{E[x]^{2}} \\
& =E\left[x^{2}\right]-E[x]^{2}
\end{aligned}
$$

Some Known Means \& Variances:

	$\frac{\text { Mean }}{}$	$\frac{\text { Variance }}{}$
Uniform:	$\frac{n+1}{2}$	$\left(n^{2}-1\right) / 12$
Binomial:	$n p$	$n p(1-p)$
Geometric:	$\frac{1}{p}$	$\frac{1-p}{p^{2}}$
Bernoulli:	p	$p(1-p)$

Properties of variance.

- Variance of a constant is 0 .

$$
\begin{aligned}
-\sigma_{a x}^{2} & =a^{2} \sigma_{X}^{2} \\
-\sigma_{X+Y}^{2} & =E\left[(X+Y)^{2}\right]-E[X+Y]^{2}
\end{aligned}
$$

(use linear property of expectation)

$$
\begin{aligned}
& =E\left[x^{2}+y^{2}+2 x y\right]-(E[x]+E[x])^{2} \\
& \vdots \\
& =\sigma_{x}^{2}+\sigma_{y}^{2}+2(E[X Y]-E[X] E[Y])
\end{aligned}
$$

$X \& Y$ are independent, this is 0

$$
x \text { and } y \text { are independent } \Rightarrow \underbrace{\sigma_{x+y}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}}_{\text {uncorrelated }}
$$

Random Variable (Continuous setting).
A random vainadle X is continuous if it's domain, which is the set of values x that X can take, is continuous. eeg. X can take any real value between O and 1.

Discrete Case
un n
Probability Mas Function.

Interpretation:
Every x has prob. $p(x)$

$$
\begin{aligned}
P(a \leqslant X \leqslant b) & =\sum_{x \in[a, b]} P(x) \\
\sum_{x} P(x) & =1
\end{aligned}
$$

Continuous Case
Probability "density" function

Interpretation
$-P(a \leqslant X \leqslant b)=\int_{a}^{b} f(x) d x$

$$
\int_{-\infty}^{+\infty} f_{x}(x) d x=1
$$

For a continuous R.V. X what is

$$
P(X=x)=P(x \leqslant X \leqslant x)=\int_{x}^{x} f_{X}(x) d x=0
$$

- This doe, not mean x never shows up !
- Not all zeros are the same.

$$
\begin{aligned}
& P(a \leqslant X \leqslant a+\delta)=\int_{a}^{a+\delta} f_{X}(x) d x \\
& \approx f_{X}(a) \cdot \delta
\end{aligned}
$$

$$
\frac{P(x=a)}{P(x=b)}=\lim _{\delta \rightarrow 0} \frac{P(a \leqslant x \leqslant a+\delta)}{P(b \leqslant x \leqslant b+\delta)} \approx \frac{f_{x}(a) \delta}{f_{x}(b) \delta}=\frac{f_{x}(a)}{f_{x}(b)}
$$

Let's yarn over some cance to to continuous setting:

- Expectation: $E[g(x)]=\int_{-\infty}^{+\infty} g(x) f_{x}(x) d x$
- Independence: X and Y independent $\Leftrightarrow \underbrace{f_{X, Y}(x, y)}_{\text {joint density }}=f_{X}(x) f_{Y}(y)$

$$
\iint f_{x, y}(x, y) d x d y=1
$$

- Conditional density: $f_{x \mid Y=y}(x)=\frac{f_{x, y}(x, y)}{f_{Y}(y)}$

Law of total prob:

$$
f_{Y}(y)=\int f_{Y \mid X}(y) f_{X}(x) d x
$$

Bayes Rule:

$$
\begin{aligned}
& \text { Le: } \\
& f_{X \mid Y=y}(x)=\frac{f_{Y \mid X}(y) f_{X}(x)}{f_{Y}(y)=\int f_{X \mid X}(y) f_{X}(x) d x} \\
& \text { "Sum" specific } x \\
& \text { for all } x
\end{aligned}
$$

For simpliaty, we drop subscripts when clear form context.

$$
\begin{aligned}
& f(y)=\int f(y \mid x) f(x) d x \\
& f(x \mid y)=\frac{f(y \mid x) f(x)}{\int f(y \mid x) f(x) d x}
\end{aligned}
$$

