Other random variables.
So far:

$\frac{\text { Discrete }}{\text { Uniform }}$	
Binomial	
geontinuous	
Serriform	
Bernoulli	

Strategy: 1) Underlying physical experiment
2) Limiting procedure

Poisson (Approximation to Binomial)
Binomial

$$
\begin{gathered}
x=x_{1}+x_{2}+\cdots+x_{n} \\
x_{i}=\left\{\begin{array}{lll}
1 & (\text { i.i.d }) \\
0 & 1-p & \text { independent }
\end{array}\right. \\
P(x=k)=b(k, n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
\end{gathered}
$$

Setting: $n \rightarrow \infty, p \rightarrow 0, n p \rightarrow \lambda$
Practically: n large, p is small, up moderate

$$
\begin{aligned}
& p=\frac{\lambda}{n} \quad(\lambda \text { is constant) } \\
& n \rightarrow \infty \\
& \begin{aligned}
& b(k, n, p)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
&=\frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k} \\
&=\frac{\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!n^{k}} \lambda^{k} \frac{\left(1-\frac{\lambda}{n}\right)^{n}}{\left(1-\frac{t}{n}\right)^{k}}}{b(k, n, p)} \\
&=\frac{\lambda^{k}}{k!} e^{-\lambda} 1 \\
&=p(k, \lambda)
\end{aligned}
\end{aligned}
$$

k	$P(k, \lambda)$	$b(k, n, p)$
0	0.2541	0.2537
1	0.3481	0.3484
\vdots	\vdots	\vdots
5	0.0102	0.0101
6	0.0023	0.0023

$$
\begin{aligned}
& n=500 \\
& p=\frac{1}{365} \\
& n p=\lambda=1.3699
\end{aligned}
$$

$P(k, \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!}$ is a valid probability mass function

If x is Poison distribated:

$$
\begin{aligned}
& E[x]=\lambda \\
& \sigma_{x}^{2}=\lambda
\end{aligned}
$$

Events occur over time

- Divide interval of time $[0, t]$ into small intervals of size $\frac{1}{n}$ (n is large)
- Event occurs in a small interval with probability p that is small
- Dunning interval $[0, t]$, I have $\approx n t$ small interval (trials in a binomial R.V)

$$
b(k, n t, p)
$$

ŋ \uparrow - prob. of cent
\# events \#trials
in $[0, t]$

- Let's assampe that $n p \rightarrow \lambda$ (np does not vanish) (np does not go to ∞)
- $n t p \rightarrow \lambda t$
$P(K$ events in $[0, t]) \approx \frac{(\lambda t)^{K} e^{-\lambda t}}{k!} \quad$ (Poison approx)
\# events in $[0, t]$
is a discrete quantity $\in\{0,1,2,3, \ldots$.

$$
\begin{aligned}
1-P_{n} & =\left(1-P_{2 n}\right)\left(1-P_{2 n}\right) \\
1-P_{n} & =1-2 P_{2 n}+P_{2 n}^{2} \\
P_{n} & =2 P_{2 n}-P_{2 n}^{2} \\
n P_{n} & =2 n P_{2 n}-n P_{2 n}^{2}
\end{aligned}
$$

so $n p_{n}<2 n p_{2 n}$
So $n p_{n}$ does not go to zero
nP does not go to infinity either because this means we expect infinitely many event in any small iuterval t.
let $T=$ time until the first event (continuous quantity)

$$
P(T \leqslant t)=?
$$

example: $t=10 \mathrm{sec}$
What's the prob. that the first event occurs whin 10 sec?

This means within to sec I have one or more events.

$$
P(k=1)+P(k=2)+P(k=3)+\cdots \cdot=1-P(k=0)
$$

$$
\text { For any } t>P(T \leqslant t)=1-\frac{(\lambda t)^{0} e^{-\lambda t}}{0!}=1-e^{-\lambda t}
$$

$$
\begin{aligned}
P(T \leqslant t)= & \int_{0}^{t} f_{T}(z) d z=1-e^{-\lambda t} \\
& f_{T}(t)=\lambda e^{-\lambda t} \text { exponential density. }
\end{aligned}
$$

If x is exponentially distributed $f(x)=\lambda e^{-\lambda x}$ then $E[x]=\frac{1}{\lambda}$

$$
\sigma_{x}^{2}=\frac{1}{\lambda^{2}}
$$

$$
P(T \geqslant t+\tau \mid T \geqslant \tau)
$$

I waited for \mathcal{Z} and nothing happened What's the prob. that I have to wait for an $\xrightarrow{\text { additional }}$ time t

$$
\begin{aligned}
P(T \geqslant t+\tau \mid T \geqslant r)= & \frac{\overbrace{P(T \geqslant \tau \mid T \geqslant t+\tau)} P(T \geqslant t+\tau)}{P(T \geqslant r)} \\
& =\frac{e^{-\lambda(t+\tau)}}{e^{-\lambda \tau}}=e^{-\lambda t} \\
& =P(T \geqslant t) \quad \text { [memoryless] }
\end{aligned}
$$

waiting for the additional time t, has the same prob. as waiting for t starting at time 0 .

Bayes rule with densities

$$
\begin{gathered}
f(x \mid y)=\frac{f(y \mid x) f(x)}{\int f(y \mid x) f(x) d x} \\
f_{T}(t \left\lvert\, \underbrace{T \geqslant \tau)}_{\text {Event }}=\frac{P(T \geqslant \tau \mid T=t) f_{T}(t)}{\int_{0}^{\infty} P(T \geqslant \tau \mid T=t) f_{T}(t) d t}\right. \\
P(T \geqslant \tau \mid T=t)= \begin{cases}1 & \text { if } t \geqslant \tau \\
0 & \text { denominator } \\
0 & \text { otherwise not } \quad \\
\text { if } t<\tau \\
\text { the }\end{cases} \\
\text { sse below] }
\end{gathered}
$$

$$
\begin{aligned}
& f_{T}(t \mid T \geqslant r)=\frac{\mathbb{1}_{t \geqslant \tau} \cdot f_{T}(t)}{\int_{0}^{\left.\int_{0}^{P(T \geqslant r|T| \tau t)} f(t) d t\right)}+\int_{0}^{\int_{\tau}^{P(T \geqslant \tau \mid \tau t)} \underbrace{\rho}_{1}(t) d t}} \\
& =\frac{\mathbb{1}_{t \geqslant \tau} f(t)}{\int_{\tau}^{\infty} f(t) d t=P(T \geqslant \tau)}=\left\{\begin{array}{c}
\frac{\lambda e^{-\lambda t}}{e^{-\lambda \tau}}=\lambda e^{-\lambda(t-\tau)} \\
0 \quad \text { otherwise }
\end{array} t \geqslant \tau\right.
\end{aligned}
$$

In general

$$
\begin{aligned}
f(x \mid E) & =\frac{P(E \mid X=x) f(x)}{\int_{-\infty}^{+\infty} P(E \mid X=x) f(x) d x} \\
P(E \mid x) & =\frac{f(x \mid E) P(E)}{f(x \mid E) P(E)+f\left(x \mid E^{c}\right)[1-P(E)]}
\end{aligned}
$$

