Problem 0: Readings
Read note 6 on the course web page.

Problem 1: Mixture
Suppose that your prior for \(\mu \) is \(\frac{2}{3} : \frac{1}{3} \) mixture of \(N(0, 1) \) and \(N(1, 1) \), and that a single observation is made \(x \sim N(\mu, 1) \) and turns out to be equal to 2. What is the posterior probability that \(\mu > 1 \).

Solution: Based on note 6, the posterior for each of the above priors when considered separately, is given by (when \(x = 2 \) as given):

\[\mu | x \sim N\left(\frac{\sigma^2 \beta + \tau^2 x}{\sigma^2 + \tau^2}, \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2} \right) \]

\(\mu | x \sim N(1, 1/2) \) given first prior \(g(\mu) \)

\(\mu | x \sim N(3/2, 1/2) \) given second prior \(h(\mu) \)

Therefore \(f(\mu|x) \) is a mixture of the above two posteriors, with mixing factors \(\alpha(2) \) and \(\beta(2) = 1 - \alpha(2) \).

\[f(\mu|x = 2) = \alpha(2)N(1, 1/2) + \beta(2)N(3/2, 1/2) \]

where

\[\frac{\alpha(x)}{1 - \alpha(x)} = \frac{\alpha \int f(x|\mu)g(\mu)d\mu}{\beta \int f(x|\mu)h(\mu)d\mu} \]

This leads to:

\[\alpha(x) = \frac{2 \int f(x|\mu)g(\mu)d\mu}{\int f(x|\mu)g(\mu)d\mu + \int f(x|\mu)h(\mu)d\mu} \]

\[f(x|\mu)g(\mu) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(\mu-x)^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{1}{2}} e^{-\frac{x^2}{2}} \]

\[= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{1}{2}} e^{-\frac{(\mu-x)^2}{2}} = \frac{1}{\sqrt{2\pi}} e^{-x^2/4} \]

\[= \frac{1}{\sqrt{2\pi}} e^{-\frac{(\mu-x)^2}{2(\sqrt{1/2})^2}} = \frac{1}{\sqrt{2\pi}} e^{-x^2/4} \]

\[= \frac{1}{\sqrt{2\pi}} e^{-\frac{(\mu-x)^2}{2(\sqrt{1/2})^2}} = \frac{1}{\sqrt{2\pi}} e^{-x^2/4} \]
Therefore,
\[\int f(x|\mu) g(\mu) d\mu = \frac{\sqrt{1/2}}{\sqrt{2\pi}} e^{-x^2/4} \]
Similarly, we get:
\[f(x|\mu) h(\mu) = \frac{\sqrt{1/2}}{\sqrt{2\pi}} e^{-(x-1)^2/4} = \frac{1}{\sqrt{2\pi}} e^{-\frac{(\mu - (x+1/2))^2}{2(\sqrt{1/2})^2}} \]
Therefore,
\[\int f(x|\mu) h(\mu) d\mu = \frac{\sqrt{1/2}}{\sqrt{2\pi}} e^{-(x-1)^2/4} \]
Setting \(x = 2 \), we get \(\alpha(2) \approx 0.49 \). Therefore,
\[f(\mu|x) = 0.49 \frac{1}{\sqrt{2\pi}\sqrt{0.5}} e^{-\frac{\mu - 1.5^2}{2(0.5)^2}} + 0.51 \frac{1}{\sqrt{2\pi}} e^{-\frac{\mu - 1.5^2}{2(0.5)^2}} \]
We need to integrate the above from 1 to \(\infty \) to obtain the posterior probability that \(\mu > 1 \). The first part should evaluate to 0.9 \(\times \) 0.5 because it consists of a normal density with mean 1. For the second, we have to translate it into a standard normal to figure it out. So we will be looking at \(z = (1 - 1.5) / \sqrt{0.5} = -0.707 \). We need \(1 - \Phi(-0.707) = 0.76 \). Therefore, we get:
\[0.49 \times 0.5 + 0.51 \times 0.76 \approx 0.634 \]
Problem 2:
Assume \(X_i \sim_{iid} N(\mu, \sigma^2) \) and \(\mu \) is believed to be \(\mu_0 \) with probability 1/2 and \(\mu \sim N(\mu_0, \sigma^2) \) with probability 1/2.

A number of observations, \(n \), reveal \(\bar{x} = \mu_0 + 1.96\sigma / \sqrt{n} \). What is the probability that \(\mu = \mu_0 \) when \(n = 5 \) and \(n = 50 \)? Comment on the findings.

Solution:
\[P(\mu = \mu_0|\bar{x}) = \frac{f(\bar{x}|\mu = \mu_0) \times 0.5}{f(\bar{x}|\mu = \mu_0) \times 0.5 + \int f(\bar{x}|\mu)N(\mu_0, \sigma^2) d\mu \times 0.5} \]
So
\[P(\mu = \mu_0|\bar{x}) = \frac{e^{-1.9208}}{e^{-1.9208} + \int e^{-\frac{(\bar{x}-\mu)^2}{2\sigma^2}} N(\mu_0, \sigma^2) d\mu} \]
Now let’s rearrange the expression inside the integral:
\[e^{-\frac{\mu^2}{2\sigma^2}/n} e^{-\frac{(\bar{x}-\mu)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{n\bar{x}^2+n\mu^2-2\mu n\bar{x}+\mu^2\bar{x}^2-2\mu n\bar{x}}{2\sigma^2}} \]
\[= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(n+1)\mu^2-2\mu(n+\mu_0)+n\bar{x}^2+n\mu_0^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\mu^2-2\mu(n+\mu_0)+n\bar{x}^2+n\mu_0^2}{2\sigma^2/(n+1)}} \]
\[= \frac{1}{\sqrt{2\pi}\sigma} \sqrt{n+1} e^{-\frac{(n+1)\mu^2-2\mu(n+\mu_0)+n\bar{x}^2+n\mu_0^2}{2\sigma^2/(n+1)}} \]
So when we integrate we get:
\[\frac{1}{\sqrt{n+1}} e^{-\frac{n\bar{x}^2+n\mu_0^2}{2\sigma^2/(n+1)}} = \frac{1}{\sqrt{n+1}} e^{-\frac{(\bar{x}-\mu)^2}{2\sigma^2/(n+1)}} = \frac{1}{\sqrt{n+1}} e^{-1.9208} \]
For any value of \(n \), we have:

\[
P(\mu = \mu_0 | \bar{x}) = \frac{e^{-1.9208}}{e^{-1.9208} + \frac{1}{\sqrt{n+1}} e^{\frac{1}{2n+1}}}
\]

When \(n = 5 \) this is approximately 0.33, and when \(n = 50 \) this is approximately 0.52. This is essentially Lindley’s paradox. The larger \(n \) is, the more likely that \(\mu = \mu_0 \), even though a z-score for \(\bar{x} \) corresponds to \(\Phi(-1.96) \) which is 0.025.

Problem 3

A hypothesis may be strongly rejected by a test of significance and yet be awarded high odds by a Bayesian analysis based on a mixture of a small prior probability of that hypothesis, and a diffuse density of the remaining probability. This is known as Lindley’s paradox.

In this problem you are asked to exhibit this paradox using only one sample point \(x \), where \(X \sim N(\mu, \sigma^2) \), and a mixture of the following prior densities: \(\mu = \mu_0 \) with probability \(p \), and the rest of the probability is distributed according to a normal density \(\mu \sim N(\beta, \tau^2) \), such that \(\sigma/\tau \rightarrow 0 \) (making it diffuse).

In other words, show that \(P(\mu = \mu_0 | x) \) goes to 1 when \(\sigma/\tau \rightarrow 0 \) for some choice of \(x \) where \(\Phi(-|x-\mu_0|/\sigma) \approx 0 \).

Solution:

\[
\frac{\alpha(x)}{1 - \alpha(x)} = \frac{p \int_{-\infty}^{\infty} f(x|\mu) \delta(\mu - \mu_0) \, d\mu}{(1 - p) \int_{-\infty}^{\infty} f(x|\mu) \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\mu - \mu_0)^2}{2\sigma^2}} \, d\mu}
\]

Rearranging terms of the integral in the denominator, we get:

\[
\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(\mu - \mu_0)^2}{2\sigma^2}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}} = \frac{1}{2\pi\sigma} e^{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2} - \frac{\tau^2 + \sigma^2 \beta^2}{2\tau^2 + \sigma^2}}
\]

\[
= \frac{1}{\sqrt{\tau^2 + \sigma^2}} \frac{e^{-\frac{(\mu - \mu_0)^2}{\tau^2 + \sigma^2}}}{\sqrt{2\pi}} \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{(\mu - \mu_0)^2}{2\tau^2 + \sigma^2}}
\]

Therefore, when we integrate we get:

\[
\frac{1}{\sqrt{\tau^2 + \sigma^2}} \frac{e^{-\frac{(\mu - \mu_0)^2}{\tau^2 + \sigma^2}}}{\sqrt{2\pi}}
\]

Letting \(\sigma/\tau \rightarrow 0 \), we get:

\[
\frac{1}{\sqrt{\tau^2}}
\]

Now

\[
f(x|\mu_0) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu_0)^2}{2\sigma^2}}
\]

For any value of \(x = \mu_0 \pm c\sigma \), the above is a constant multiplied by \(\frac{1}{\sqrt{2\pi}\sigma} \).
Therefore,

\[\frac{\alpha(x)}{1 - \alpha(x)} \propto \frac{\tau}{\sigma} \]

which goes to infinity as \(\sigma/\tau \to 0 \). Therefore, \(\alpha(x) \to 1 \).