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1 Introduction and probability axioms

If we make an observation about the world, or carry out an experiment, the
outcome will always depend on chance to a varying degree. Think of the weather,
the stock market, or a medical experiment. Probability is a mathematical tool
to model this dependence on chance.

We start by listing all possible outcomes of the experiment. These possible
outcomes form a set S that we call the sample space. Perhaps the most classical
experiment is tossing a coin. This has two outcomes (well, assuming the coin
does not land on its edge): In this case S = {H,T}. As an another example,
the outcomes of throwing a die form the set S = {., .., ..., ...., ....., ......}.

Every subset of S is called an event. An example is the event E = {.., ...., ......}
which represents the event that we throw an even number of dots.

Given a sample space S (which could be infinite), we assign for each outcome
si is S a “probability” P ({si}) (we then have a probability space) such that:

Probability Axioms

1. P (si) ≡ P ({si}) ≥ 0 for all si ∈ S

2. P (A ∪ B) = P (A) + P (B), where A ∩ B = ∅ (exclusive events)

3. P (S) = 1

The second axiom suggests that, given an event E = {s1, . . . , sk}, P (E) =
P (s1) + . . . P (sk), because E = {s1} ∪ {s2} . . . ∪ {sk} and these are exclusive
events. Therefore, by the third axiom

∑
si∈S P (si) = 1. We can also show that

p(∅) = 0.
The second axiom needs strengthening to handle infinite sample spaces:

Probability Axioms

1. P (si) ≡ P ({si}) ≥ 0 for all si ∈ S

2. P (A1 ∪ A2 ∪ . . .) = P (A1) + P (A2) + . . ., where Ai ∩ Aj = ∅ (pairwise
exclusive events, countably many)

3. P (S) = 1

If the probability space is uniform, then P (s1) = . . . = P (sk) = 1/k and
hence for every event E, P (E) = |E|/|S|.



2 Independence and conditioning

We define the probability of A conditioned on B (the probability of A given
that B occurred) as:

P (A|B) =
P (A,B)

P (B)

where P (A,B) stands for P (A ∩ B), and P (B) > 0.
In other words, B acts as our new sample space. Here’s an example: Consider

the two events when rolling a fair die (uniform probability space):

A = {.., ...., ......}

B = {..., ......}

We can compute the following probabilities: P (A,B) = 1/6, P (A) = 1/2,
and P (B) = 1/3. Observe that P (A,B) = P (A)P (B). This is not necessarily
true for any two events.

Two events A and B are independent iff P (A,B) = P (A)P (B), i.e. ac-
cording to our definition above, P (A) = P (A|B) (this also means that P (B) =
P (B|A)). This definition of independence is motivated by the fact that know-
ing that B occurred does not change the probability of A: the “size” of A ∩ B
relative to B is the same as the “size” of A with respect to the entire sample
space S.

Note that two events that are independent, may become dependent after
conditioning. For instance, while A and B are the events defined above, con-
sider the event C = {., .., ..., ...., .....}.

P (A) = 1/2

P (B) = 1/3

P (A,B) = 1/6 (independent)

P (C) = 5/6

P (A|C) = P (A,C)/P (C) = (1/3)/(5/6) = 2/5

P (B|C) = 1/5

P (A,B|C) = P (A,B,C)/P (C) = P (∅)/P (C) = 0

Note that P (A,B|C) 6= P (A|C)P (B|C), so conditioned on C, A and B are
not independent anymore.



Finally, consider flipping the coin twice. The sample space S = {HH,HT, TH, TT}.
Each outcome has probability 1/4 because the two flips are independent and,
therefore, P (HH) = P (H)P (H) = 1/4 for instance. Let’s find two events that
are dependent. A = {HH,HT, TH}, and B = {HH,TT}.

P (A) = 3/4

P (B) = 1/2

P (A,B) = 1/4 6= P (A)P (B)

P (B|A) = 1/3 6= P (B)

P (A|B) = 1/2 6= P (A)

This example is related to the following (what seems to be a) paradox: The
king comes from a family of two children. What is the probability that the
king’s sibling is a male?


