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1 Multiplication rule for conditioning

We can generalize the formula P (A,B) = P (A|B)P (B) to more than two events.
For instance, P (A,B,C) = P (A)P (B|A)P (C|A,B). In general,

P (A1, A2, . . . An) = P (A1) · P (A2|A1) · . . . · P (An|A1, A2, . . . An−1)

This is easy to verify by replacing P (Ai|A1, . . . Ai−1) with its equivalent
expression P (A1, . . . , Ai)/P (A1, . . . Ai−1), as follows:

P (A1) ·
P (A1, A2)

P (A1)
·
P (A1, A2, A3)

P (A1, A2)
· . . . ·

P (A1, . . . , An−1)

P (A1, . . . , An−2)
·

P (A1, . . . , An)

P (A1, . . . , An−1)

In the above expression, the numerators and denominators cancel each other
and what remains is P (A1, . . . An).

2 Conditioning on multiple events

Given an event B, consider a partition of the sample space into events A1, A2, A3, . . . .

---------------------

| A1 | A2 | A3 |

| | | |

| ------------- |

| | B | |

| | | |

| ------------- |

| | | |

---------------------

Now, B = (B ∩ A1) ∪ (B ∩ A2) ∪ (B ∩ A3) . . .. These events are exclusive
and, therefore,

P (B) = P (B ∩ A1) + P (B ∩ A2) + P (B ∩ A3) . . .
= P (B|A1)P (A1) + P (B|A2)P (A2) + P (B|A3)P (A3) . . .

.



Therefore, we conclude that:

P (B) =
∑

i

P (B|Ai)P (Ai)

3 Bayes’ rule

From the definition of conditional probability and above, we have:

P (Ai|B) =
P (B,Ai)

P (B)
=

P (B|Ai)P (Ai)∑
i
P (B|Ai)P (Ai)

Bayes’ rule is particularly useful when Ai is not observable but B is. For
instance, assume we know the probability of Ai but we cannot observe the
occurrence of such event. However, we can observe an event B, the occurrence
of which depends on Ai, and assume we can easily compute P (B|Ai). Then we
can say something about the occurrence of Ai. P (Ai) is called the prior, B the
observation, and P (Ai|B) the posterior.

Let’s revisit the king’s sibling paradox. We can imagine the following sce-
nario.

|

--------------

| |

A1: same A2: different non-observable

| |

1/2 1/2

| |

------- -------

| | | |

1/2 1/2 1/2 1/2

| | | |

MM FF MF FM

B B B observable

Events A1 and A2 correspond to whether both children have the same gender
or not, respectively. These events are not observable, but influence event B that
at least one of the siblings is a male (observable). Note: physically, the process
of having two children is not necessarily carried out this way, i.e. by deciding
first whether they will have the same gender or not, but we can model it this
way. Now,

P (A1|B) =
P (B|A1)P (A1)

P (B|A1)P (A1) + P (B|A2)P (A2)

and from the diagram above,



P (A1|B) =
1/2 · 1/2

1/2 · 1/2 + 1/2 · (1/2 + 1/2)
= 1/3

Next, we will consider the examples of medical tests, colored balls and bins,
evidence in the court room, biology of twins, and the famous Monty Hall.

4 Medical test

Consider a medical test that is positive with probability 0.99 if the patient has
the disease. Moreover, if the patient does not have the disease, the test is
positive with probability 0.05.

A patient is tested positive. What is the probability that he has the disease?
(note that this is not 0.99)

Let A be the event that the patient has the disease, and Ac be its complement
(not having the disease). Let B be the event that the test is positive. Using
Bayes’ rule:

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

=
0.99P (A)

0.99P (A) + 0.05(1 − P (A))
=

0.99P (A)

0.05 + 0.94P (A)

If the disease is rare, say P (A) = 0.001, then P (A|B) ≈ 0.02. Therefore, we
have a 98% chance of false positive. For such a rare disease, the test is not good
enough.

5 Colored balls and bins

Consider a bin with 30 red balls and 10 black balls, and another bin with 20
balls of each color. A ball is picked from a bin with equal probability; therefore,
if Bi is the event that bin i was chosen, P (B1) = P (B2) = 1/2. The ball is red,
what is the probability that bin 1 was chosen?

Let R be the event that the ball is red, then:

P (B1|R) =
P (R|B1)P (B1)

P (R|B1)P (B1) + P (R|B2)P (B2)

=
30/40 · 1/2

30/40 · 1/2 + 20/40 · 1/2
= 3/5 = 0.6

The result is expected since bin 1 contains more red balls. But which is
really important, the number, or the fraction of red balls? (think about it).



6 Evidence in the court room

Consider using a DNA match as evidence for guilt. If G is the event that the
person is guilty, and M is the event of a DNA match, then P (M |G) is usually
high (close to 1) and P (M |Gc) is usually low (close to 0, a match between
two random DNAs). This is why a DNA match is considered to be a strong
evidence. We are interested in reaching a verdict of guilty or not guilty, given
that evidence. Therefore, we need to compute P (G|M) and P (Gc|M). One
possibility is to compute the log-odd ratio:

log
P (G|M)

P (Gc|M)

and decide based on whether the result is positive (guilty) or non-positive
(not guilty). This is not really a new concept, if the logarithm is positive, then
P (G|M)/P (Gc|M) > 1 and, hence, P (G|M) > P (Gc|M). So essentially we are
deciding based on which is more likely. One advantage of this strategy is that
we do not have to compute P (M) (the denominator in Bayes’ rule) because it
is a common factor in P (G|M) and P (Gc|M).

P (G|M)

P (Gc|M)
=

P (M |G)P (G)

P (M |Gc)P (Gc)
=

(1 − ǫ)P (G)

δ(1 − P (G))
≈

1

δ

P (G)

1 − P (G)

P (G) is of course a controversial measure since one could argue that it is
not feasible to determine the probability of crime in a given society (we may
however have an estimate of it). Let’s say δ = 1/106, then 1/δ = 1000000.

P (G|M)

P (Gc|M)
= 1000000

P (G)

1 − P (G)

Therefore, it takes a really clean society to overcome these odds. Most likely,
1/δ will determine the verdict (guilty). That’s the classical approach. However,
if the crime rate is really low, there is a chance that the verdict will be not guilty.
This is an example where the classical approach and the Bayesian approach lead
to different results (later we will see Lindley’s paradox).

7 Biology of twins

Twins can be either monozygotic (developed from a single egg) or dizygotic. It
is always the case that monozygotic twins are of the same sex, whereas dizygotic
twins can be of opposite sex. Denote monozygotic by M and dizygotic by D,
and let B stand for boy and G stand for girl, then:

P (GG|M) = P (BB|M) =
1

2
, P (GB|M) = P (BG|M) = 0

P (GG|D) = P (BB|D) = P (GB|D) = P (BG|D) =
1

4



Now, assume that we conduct the following experiment: we sample many
twins of the same sex, and discover (by looking for different features) that the
probability they are dyzygotic is p. What is the proportion of dizygotic twins
in the population.

P (D|{GG,BB}) = p =
P ({GG,BB}|D)P (D)

P ({GG,BB})
=

1/2 · P (D)

1/2 · P (D) + 1 · (1 − P (D))

Therefore, P (D) = 2p/(1 + p).

8 Monty Hall

There are three boxes: A, B, and C. Only one of them contains money, but
all three are equally likely to contain the money. We pick one randomly (with
equal probability). Then, one of the remaining two boxes is opened to reveal
that it is empty. Finally we are given the choice to stick to the box we have
or switch to the remaining one. What is the best strategy? One argument is
that all boxes are equally likely to contain the money, so it makes no difference
whether we switch or not. Using Bayesian analysis, however, we can show that
there is always a benefit in switching.

Let (x, y, z) represent the outcome of this game:

• x: the box containing to money

• y: the box we pick

• z: the box that is opened

For instance, we are interested in computing:

P (x = A|y = A, z = B) = P (x = A, y = A, z = B)/P (y = A, z = B)

Note that:

P (x, y, z) = P (x)P (y|x)P (z|x, y) = 1/3 · 1/3 · P (z|x, y) = 1/9 · P (z|x, y)

P (y, z) =
∑

x

P (y, z|x)P (x) =
∑

x

P (y|x)P (z|x, y)P (x) =

=
∑

x

1/3 · 1/3 · P (z|x, y)] = 1/9
∑

x

P (z|x, y)

Therefore,

P (x|y, z) =
P (z|x, y)∑
x

P (z|x, y)



P (x = A|y = A, z = B) =

P (z = B|x = A, y = A)

P (z = B|x = A, y = A) + P (z = B|x = B, y = A) + P (z = B|x = C, y = A)

=
1/2

1/2 + 0 + 1
= 1/3

Similarly, we find that:

P (x = A|y = A, z = B) = 1/3 (from above)

P (x = B|y = A, z = B) = 0

P (x = C|y = A, z = B) = 2/3

The same result holds if we consider other (valid) permutations of x, y, and
z. Therefore, there is always a benefit in switching. Another way to see this is
by listing all the outcomes with their probabilities:

(A,A,B) 1/18 (B,B,A) 1/18 (C,C,B) 1/18
(A,A,C) 1/18 (B,B,C) 1/18 (C,C,A) 1/18
(A,B,C) 1/9 (B,A,C) 1/9 (C,B,A) 1/9
(A,C,B) 1/9 (B,C,A) 1/9 (C,A,B) 1/9

Clearly, P (x = A|y = A, z = B) = P (A,A,B)/(P (A,A,B) + P (C,A,B)) =
1/3.

It is also possible to view the Monty Hall paradox as a tree with three
phases, the first of which is non-observable, while the last two are observable
(in a similar way to the king’s sibling paradox).

|

-------------------------------------------

| | |

1/3 1/3 1/3

| | |

A B C

| | |

----------- ----------- -----------

| | | | | | | | |

1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3

| | | | | | | | |

A B C A B C A B C

| | | | | | | | |

--- | | | --- | | | ---

| | | | | | | | | | | |

1/2 1/2 1 1 1 1/2 1/2 1 1 1 1/2 1/2

| | | | | | | | | | | |

B C C B C A C A B A A B


