Random variables (discrete)

Saad Mneimneh

1 Introducing random variables

A random variable is a mapping from the sample space to the real line. We
usually denote the random variable by X, and a value that it can take by x.

Example 1: Rolling a die

The sample space is {., .., ..., csc0y ceerry oooeo. b We define a random variable by
mapping the dots in the outcome to the number they represent. Our random
variable can take the following values {1,2,3,4,5,6}.

P(X =x)=1/6 for x € {1,2,3,4,5,6}
In other words,
PX=1)=PX=2)=..=P(X=6)=1/6

Example 2: Tossing a coin

The sample space is {H,T}. We define a random variable by mapping T' to
0 and H to 1. Our random variable can take the following values {0,1}.

PX=1)=1-P(X=0)=p
where p is the probability of getting a head (1/2 if coin is fair).

2 Probability mass function

A probability mass function (PMF) assigns a probability to each value of the
random variable.

2.1 Uniform PMF

For instance, the following is a PMF for the die example above.
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Such a PMF is called uniform (discrete uniform), because all probabilities
are equal.

2.2 Binomial PMF

Consider tossing the coin n times. If n = 3, for instance, the sample space is
the following (8 possible outcomes):

S={HHH HHT,HTH ,HTT,THH,THT,TTH, TTT}

In general, we have 2" possible outcomes. If the coin is fair, all outcomes
are equally likely, with each having a probability of 1/2™ (uniform). If P(H) =
1 — P(T) = p, then outcomes have different probabilities. The probability of
an outcome is given by p¥(1 — p)"~* where k is the number of heads in the
outcome.

Consider the random variable that maps each outcome to the number of
heads. Then, P(X = k) is p*(1 — p)"~* multiplied by the number of outcomes
with k heads.

P(X = k) = b(k,n,p) = < " >pk(1 -

is the number of ways of choosing k elements from a set of n elements. This
is equivalent to the number of outcomes with k& heads (we need to choose k
tosses out of n tosses and make them heads, the remaining n — k tosses are
automatically tails). The above PMF is known as the binomial PMF.

where

2.3 Geometric PMF

Now, consider tossing the coin until getting a head. The sample space is (infi-
nite) the following:

S={H,TH,TTH,TTTH,TTTTH, TTTTTH, TTTTTTH, TTTTTTTH, ...}



For a given outcome,

where k is the number of tails in the outcome.
Define a random variable that maps each outcome to the number of tosses.
Then, it is obvious that:

P(X =k)=p(1—p)*!

This is knows as the geometric PMF, because: P(X = 1) = p(1 — p)°,
P(X =2)=p(1l-p)', P(X =3)=p(1-p)? P(X =4)=p(1-p)’
probability decreases geometrically in (1 — p). Note that

zk:P(X:k‘):p[l-l—(l—p)+(1_p)2+(1_p)3+“']:m_

3 Expectation (mean) of a random variable

The expected value (or mean) of a random variable X is defined as (like a
weighted average):

E[X]=) aP(X =x)

For instance, the expected value of a uniform random variable defined over
the set {1,2,...,n} is:

E[X] :ZxP(X:x) = 1/n~Zaz

=1/n-(14+24+3+...+n)=1/n-n(n+1)/2=(n+1)/2

Expectation can also be defined for any function f(x), f(x) = x above being
a special case. In this case, we use the notation

E[f(x)] =Y f(x)P(X =)

Expectation has the following properties:

e The expected value of a constant is the constant itself.
e F[aX] = aE[X], where a is a constant.

e Linearity (very useful): F[X + Y] = E[X] + E[Y], regardless of whether
the two random variables X and Y are independent or not.

e E[XY]=E[X]E[Y]if X and Y are independent.



¢ Conditional expectation: E[X]| = E[E[X|Y = y]], the inner expectation
is over X using P(X|Y = y) which results in an expression in y, the outer
is the expectation of that expression over Y using P(Y).

Here’s an example of using linearity of expectation. If X is a binomial
random variable, then X can be viewed as the sum of independent random
variables X1 + Xs + ... + X,,, where each X; is the following random variable
(recall the coin example):

¥ — 1  with probability p
~ 1 0 with probability 1 —p

As defined above, X is called a Bernoulli trial. Then E[X] = 1-p+0-(1—p) =
p. Using linearity of expectation,

EX|=E[X1+...+ X, ) =E[X1]+ ..+ E[X,| =nE[X]|=np

The fact that these Bernoulli trials are independent is not relevant to the
above computation.

Here’s an example of using conditional expectation: Let X be a Bernoulli
trial with parameter p as above; however, p is unknown. Assume that p is
coming from a uniform distribution such that P(p = 0.25) = P(p = 0.5) =
P(p=0.75) =1/3. Then

E[X] = E[E[X|p]] = E[np] = nEp|] = n/2

If X is a geometric random variable, then E[X] = 1/p (this can be shown
by explicit evaluation of the sum as given in the formula for expectation). If,
however, p is unknown and is coming from the same distribution above, then
E[X] = E[E[X|p]] = E[1/p] =1/0.25-1/3+1/0.5-1/3+1/0.75-1/3 = 22/9.
Note that E[1/p] is not the same as 1/E[p).

4 Variance of a random variable

The variance of a random variable X is defined as:

0% = E[(X — E[X])?] (positive deviation from the mean)

The quantity E[(X — c¢)?] is minimized when ¢ = E[X] (this is easy to
show). Therefore, the variance is that minimum. One can also show that,

given two random variables X and Y, E[(X — ¢)?|Y = y] is minimized when
c=E[X|Y =y].



Using properties of expectation, we can rewrite the above as:

ok = B[X?] - B[X]?
We can compute the following:

e Uniform: 0% = (n? —1)/12
e Binomial: 0% = np(1 — p)
e Geometric: 0% = (1 —p)/p?

It is easy to verify that the variance of a constant is zero, and that o2, =
a’0%. Consider two random variables X and Y and let us compute the variance

of their sum.

Xy = E[(X +Y)’] - E[(X +Y))?
= E[X?] + E[Y?] + 2E[XY] - E[X]* - E[Y]* - 2E[X]E[Y]
= E[X? - E[X)* + E[Y?] — E[Y]? + 2(E[XY] — E[X]E[Y])
=o0% + 0% +2(E[XY] - E[X]E[Y])

Note that if X and Y are indepdendent then E[XY] = E[X]E[Y]; there-
fore, 0%,y = 0% + 0p. The term Cov(X,Y) = E[XY] — E[X]E[Y] =
E[(X — E[X])(Y — E[Y])] is called the covariance of X and Y. If the covari-
ance is zero, we say that the random variables are uncorrelated (not necessarily
independent though). Here’s an example of two random variables X and Y
that are uncorrelated but dependent. Let P(X = i) = P(X = —i) = p;, for
i=0,1,2,.... Let Y = X2. It is easy to show that E[X] = E[X?] = 0. There-
fore, E[XY]|— E[X|E[Y] = E[X3] - E[X]E[Y] =0—0- E[Y] = 0. However, X
and Y are not independent.



