Random variables (discrete)

Saad Mneimneh

1 Introducing random variables

A random variable is a mapping from the sample space to the real line. We usually denote the random variable by X, and a value that it can take by x.

Example 1: Rolling a die
The sample space is $\{., . ., \ldots, \ldots, \ldots ., \ldots .$.$\} . We define a random variable by$ mapping the dots in the outcome to the number they represent. Our random variable can take the following values $\{1,2,3,4,5,6\}$.

$$
P(X=x)=1 / 6 \text { for } x \in\{1,2,3,4,5,6\}
$$

In other words,

$$
P(X=1)=P(X=2)=\ldots=P(X=6)=1 / 6
$$

Example 2: Tossing a coin
The sample space is $\{H, T\}$. We define a random variable by mapping T to 0 and H to 1 . Our random variable can take the following values $\{0,1\}$.

$$
P(X=1)=1-P(X=0)=p
$$

where p is the probability of getting a head ($1 / 2$ if coin is fair).

2 Probability mass function

A probability mass function (PMF) assigns a probability to each value of the random variable.

2.1 Uniform PMF

For instance, the following is a PMF for the die example above.

Such a PMF is called uniform (discrete uniform), because all probabilities are equal.

2.2 Binomial PMF

Consider tossing the coin n times. If $n=3$, for instance, the sample space is the following (8 possible outcomes):

$$
S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}
$$

In general, we have 2^{n} possible outcomes. If the coin is fair, all outcomes are equally likely, with each having a probability of $1 / 2^{n}$ (uniform). If $P(H)=$ $1-P(T)=p$, then outcomes have different probabilities. The probability of an outcome is given by $p^{k}(1-p)^{n-k}$ where k is the number of heads in the outcome.

Consider the random variable that maps each outcome to the number of heads. Then, $P(X=k)$ is $p^{k}(1-p)^{n-k}$ multiplied by the number of outcomes with k heads.

$$
P(X=k)=b(k, n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

where

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

is the number of ways of choosing k elements from a set of n elements. This is equivalent to the number of outcomes with k heads (we need to choose k tosses out of n tosses and make them heads, the remaining $n-k$ tosses are automatically tails). The above PMF is known as the binomial PMF.

2.3 Geometric PMF

Now, consider tossing the coin until getting a head. The sample space is (infinite) the following:
$S=\{H, T H, T T H, T T T H, T T T T H, T T T T T H, T T T T T T H, T T T T T T T H, \ldots\}$

For a given outcome,

$$
P(T \ldots \ldots T H)=p(1-p)^{k}
$$

where k is the number of tails in the outcome.
Define a random variable that maps each outcome to the number of tosses. Then, it is obvious that:

$$
P(X=k)=p(1-p)^{k-1}
$$

This is knows as the geometric PMF, because: $P(X=1)=p(1-p)^{0}$, $P(X=2)=p(1-p)^{1}, P(X=3)=p(1-p)^{2}, P(X=4)=p(1-p)^{3}, \ldots$ The probability decreases geometrically in $(1-p)$. Note that

$$
\sum_{k} P(X=k)=p\left[1+(1-p)+(1-p)^{2}+(1-p)^{3}+\ldots\right]=\frac{p}{1-(1-p)}=1
$$

3 Expectation (mean) of a random variable

The expected value (or mean) of a random variable X is defined as (like a weighted average):

$$
E[X]=\sum_{x} x P(X=x)
$$

For instance, the expected value of a uniform random variable defined over the set $\{1,2, \ldots, n\}$ is:

$$
\begin{gathered}
E[X]=\sum_{i=1}^{n} x P(X=x)=1 / n \cdot \sum_{i=1}^{n} x \\
=1 / n \cdot(1+2+3+\ldots+n)=1 / n \cdot n(n+1) / 2=(n+1) / 2
\end{gathered}
$$

Expectation can also be defined for any function $f(x), f(x)=x$ above being a special case. In this case, we use the notation

$$
E[f(x)]=\sum_{x} f(x) P(X=x)
$$

Expectation has the following properties:

- The expected value of a constant is the constant itself.
- $E[a X]=a E[X]$, where a is a constant.
- Linearity (very useful): $E[X+Y]=E[X]+E[Y]$, regardless of whether the two random variables X and Y are independent or not.
- $E[X Y]=E[X] E[Y]$ if X and Y are independent.
- Conditional expectation: $E[X]=E[E[X \mid Y=y]$, the inner expectation is over X using $P(X \mid Y=y)$ which results in an expression in y, the outer is the expectation of that expression over Y using $P(Y)$.

Here's an example of using linearity of expectation. If X is a binomial random variable, then X can be viewed as the sum of independent random variables $X_{1}+X_{2}+\ldots+X_{n}$, where each X_{i} is the following random variable (recall the coin example):

$$
X= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

As defined above, X is called a Bernoulli trial. Then $E[X]=1 \cdot p+0 \cdot(1-p)=$ p. Using linearity of expectation,

$$
E[X]=E\left[X_{1}+\ldots+X_{n}\right]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=n E[X]=n p
$$

The fact that these Bernoulli trials are independent is not relevant to the above computation.

Here's an example of using conditional expectation: Let X be a Bernoulli trial with parameter p as above; however, p is unknown. Assume that p is coming from a uniform distribution such that $P(p=0.25)=P(p=0.5)=$ $P(p=0.75)=1 / 3$. Then

$$
E[X]=E[E[X \mid p]]=E[n p]=n E[p]=n / 2
$$

If X is a geometric random variable, then $E[X]=1 / p$ (this can be shown by explicit evaluation of the sum as given in the formula for expectation). If, however, p is unknown and is coming from the same distribution above, then $E[X]=E[E[X \mid p]]=E[1 / p]=1 / 0.25 \cdot 1 / 3+1 / 0.5 \cdot 1 / 3+1 / 0.75 \cdot 1 / 3=22 / 9$. Note that $E[1 / p]$ is not the same as $1 / E[p]$.

4 Variance of a random variable

The variance of a random variable X is defined as:

$$
\sigma_{X}^{2}=E\left[(X-E[X])^{2}\right] \text { (positive deviation from the mean) }
$$

The quantity $E\left[(X-c)^{2}\right]$ is minimized when $c=E[X]$ (this is easy to show). Therefore, the variance is that minimum. One can also show that, given two random variables X and $Y, E\left[(X-c)^{2} \mid Y=y\right]$ is minimized when $c=E[X \mid Y=y]$.

Using properties of expectation, we can rewrite the above as:

$$
\sigma_{X}^{2}=E\left[X^{2}\right]-E[X]^{2}
$$

We can compute the following:

- Uniform: $\sigma_{X}^{2}=\left(n^{2}-1\right) / 12$
- Binomial: $\sigma_{X}^{2}=n p(1-p)$
- Geometric: $\sigma_{X}^{2}=(1-p) / p^{2}$

It is easy to verify that the variance of a constant is zero, and that $\sigma_{a X}^{2}=$ $a^{2} \sigma_{X}^{2}$. Consider two random variables X and Y and let us compute the variance of their sum.

$$
\begin{gathered}
\sigma_{X+Y}^{2}=E\left[(X+Y)^{2}\right]-E[(X+Y)]^{2} \\
=E\left[X^{2}\right]+E\left[Y^{2}\right]+2 E[X Y]-E[X]^{2}-E[Y]^{2}-2 E[X] E[Y] \\
=E\left[X^{2}\right]-E[X]^{2}+E\left[Y^{2}\right]-E[Y]^{2}+2(E[X Y]-E[X] E[Y]) \\
=\sigma_{X}^{2}+\sigma_{Y}^{2}+2(E[X Y]-E[X] E[Y])
\end{gathered}
$$

Note that if X and Y are indepdendent then $E[X Y]=E[X] E[Y]$; therefore, $\sigma_{X+Y}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}$. The term $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=$ $E[(X-E[X])(Y-E[Y])]$ is called the covariance of X and Y. If the covariance is zero, we say that the random variables are uncorrelated (not necessarily independent though). Here's an example of two random variables X and Y that are uncorrelated but dependent. Let $P(X=i)=P(X=-i)=p_{i}$, for $i=0,1,2, \ldots$ Let $Y=X^{2}$. It is easy to show that $E[X]=E\left[X^{3}\right]=0$. Therefore, $E[X Y]-E[X] E[Y]=E\left[X^{3}\right]-E[X] E[Y]=0-0 \cdot E[Y]=0$. However, X and Y are not independent.

