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1 Introducing random variables

A random variable is a mapping from the sample space to the real line. We
usually denote the random variable by X, and a value that it can take by x.

Example 1: Rolling a die

The sample space is {., .., ..., ...., ....., ......}. We define a random variable by
mapping the dots in the outcome to the number they represent. Our random
variable can take the following values {1, 2, 3, 4, 5, 6}.

P (X = x) = 1/6 for x ∈ {1, 2, 3, 4, 5, 6}

In other words,

P (X = 1) = P (X = 2) = ... = P (X = 6) = 1/6

Example 2: Tossing a coin

The sample space is {H,T}. We define a random variable by mapping T to
0 and H to 1. Our random variable can take the following values {0, 1}.

P (X = 1) = 1 − P (X = 0) = p

where p is the probability of getting a head (1/2 if coin is fair).

2 Probability mass function

A probability mass function (PMF) assigns a probability to each value of the
random variable.

2.1 Uniform PMF

For instance, the following is a PMF for the die example above.
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Such a PMF is called uniform (discrete uniform), because all probabilities
are equal.

2.2 Binomial PMF

Consider tossing the coin n times. If n = 3, for instance, the sample space is
the following (8 possible outcomes):

S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}

In general, we have 2n possible outcomes. If the coin is fair, all outcomes
are equally likely, with each having a probability of 1/2n (uniform). If P (H) =
1 − P (T ) = p, then outcomes have different probabilities. The probability of
an outcome is given by pk(1 − p)n−k where k is the number of heads in the
outcome.

Consider the random variable that maps each outcome to the number of
heads. Then, P (X = k) is pk(1 − p)n−k multiplied by the number of outcomes
with k heads.

P (X = k) = b(k, n, p) =

(

n
k

)

pk(1 − p)n−k

where
(

n
k

)

=
n!

k!(n − k)!

is the number of ways of choosing k elements from a set of n elements. This
is equivalent to the number of outcomes with k heads (we need to choose k
tosses out of n tosses and make them heads, the remaining n − k tosses are
automatically tails). The above PMF is known as the binomial PMF.

2.3 Geometric PMF

Now, consider tossing the coin until getting a head. The sample space is (infi-
nite) the following:

S = {H,TH, TTH, TTTH, TTTTH, TTTTTH, TTTTTTH, TTTTTTTH, . . .}



For a given outcome,

P (T.......TH) = p(1 − p)k

where k is the number of tails in the outcome.
Define a random variable that maps each outcome to the number of tosses.

Then, it is obvious that:

P (X = k) = p(1 − p)k−1

This is knows as the geometric PMF, because: P (X = 1) = p(1 − p)0,
P (X = 2) = p(1 − p)1, P (X = 3) = p(1 − p)2, P (X = 4) = p(1 − p)3,... The
probability decreases geometrically in (1 − p). Note that

∑

k

P (X = k) = p[1 + (1 − p) + (1 − p)2 + (1 − p)3 + ...] =
p

1 − (1 − p)
= 1

3 Expectation (mean) of a random variable

The expected value (or mean) of a random variable X is defined as (like a
weighted average):

E[X] =
∑

x

xP (X = x)

For instance, the expected value of a uniform random variable defined over
the set {1, 2, ..., n} is:

E[X] =

n
∑

i=1

xP (X = x) = 1/n ·

n
∑

i=1

x

= 1/n · (1 + 2 + 3 + ... + n) = 1/n · n(n + 1)/2 = (n + 1)/2

Expectation can also be defined for any function f(x), f(x) = x above being
a special case. In this case, we use the notation

E[f(x)] =
∑

x

f(x)P (X = x)

Expectation has the following properties:

• The expected value of a constant is the constant itself.

• E[aX] = aE[X], where a is a constant.

• Linearity (very useful): E[X + Y ] = E[X] + E[Y ], regardless of whether
the two random variables X and Y are independent or not.

• E[XY ] = E[X]E[Y ] if X and Y are independent.



• Conditional expectation: E[X] = E[E[X|Y = y]], the inner expectation
is over X using P (X|Y = y) which results in an expression in y, the outer
is the expectation of that expression over Y using P (Y ).

Here’s an example of using linearity of expectation. If X is a binomial
random variable, then X can be viewed as the sum of independent random
variables X1 + X2 + . . . + Xn, where each Xi is the following random variable
(recall the coin example):

X =

{

1 with probability p
0 with probability 1 − p

As defined above, X is called a Bernoulli trial. Then E[X] = 1·p+0·(1−p) =
p. Using linearity of expectation,

E[X] = E[X1 + . . . + Xn] = E[X1] + ... + E[Xn] = nE[X] = np

The fact that these Bernoulli trials are independent is not relevant to the
above computation.

Here’s an example of using conditional expectation: Let X be a Bernoulli
trial with parameter p as above; however, p is unknown. Assume that p is
coming from a uniform distribution such that P (p = 0.25) = P (p = 0.5) =
P (p = 0.75) = 1/3. Then

E[X] = E[E[X|p]] = E[np] = nE[p] = n/2

If X is a geometric random variable, then E[X] = 1/p (this can be shown
by explicit evaluation of the sum as given in the formula for expectation). If,
however, p is unknown and is coming from the same distribution above, then
E[X] = E[E[X|p]] = E[1/p] = 1/0.25 · 1/3 + 1/0.5 · 1/3 + 1/0.75 · 1/3 = 22/9.
Note that E[1/p] is not the same as 1/E[p].

4 Variance of a random variable

The variance of a random variable X is defined as:

σ2
X

= E[(X − E[X])2] (positive deviation from the mean)

The quantity E[(X − c)2] is minimized when c = E[X] (this is easy to
show). Therefore, the variance is that minimum. One can also show that,
given two random variables X and Y , E[(X − c)2|Y = y] is minimized when
c = E[X|Y = y].



Using properties of expectation, we can rewrite the above as:

σ2
X

= E[X2] − E[X]2

We can compute the following:

• Uniform: σ2
X

= (n2 − 1)/12

• Binomial: σ2
X

= np(1 − p)

• Geometric: σ2
X

= (1 − p)/p2

It is easy to verify that the variance of a constant is zero, and that σ2
aX

=
a2σ2

X
. Consider two random variables X and Y and let us compute the variance

of their sum.

σ2
X+Y

= E[(X + Y )2] − E[(X + Y )]2

= E[X2] + E[Y 2] + 2E[XY ] − E[X]2 − E[Y ]2 − 2E[X]E[Y ]

= E[X2] − E[X]2 + E[Y 2] − E[Y ]2 + 2(E[XY ] − E[X]E[Y ])

= σ2
X

+ σ2
Y

+ 2(E[XY ] − E[X]E[Y ])

Note that if X and Y are indepdendent then E[XY ] = E[X]E[Y ]; there-
fore, σ2

X+Y
= σ2

X
+ σ2

Y
. The term Cov(X,Y ) = E[XY ] − E[X]E[Y ] =

E[(X − E[X])(Y − E[Y ])] is called the covariance of X and Y . If the covari-
ance is zero, we say that the random variables are uncorrelated (not necessarily
independent though). Here’s an example of two random variables X and Y
that are uncorrelated but dependent. Let P (X = i) = P (X = −i) = pi, for
i = 0, 1, 2, . . .. Let Y = X2. It is easy to show that E[X] = E[X3] = 0. There-
fore, E[XY ]−E[X]E[Y ] = E[X3]−E[X]E[Y ] = 0− 0 ·E[Y ] = 0. However, X
and Y are not independent.


