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1 Defining probability density

A random variable X is a continuous random variable if its domain, i.e. the set
of values x that X can take, is continuous. In this case, and analogous to the
discrete case, we define a probability density function fX(x) (as opposed to a
probability mass function), which is a continuous function of x that captures
the notion of probability in the following way:

P (a ≤ X ≤ b) =
∫ b

a

fX(x)dx

We will drop the subscript X from fX whenever it is clear from the context.
Accordingly,

P (X = x) =
∫ x

x

f(y)dy = 0

for any single value x. This is because the domain of the random variable is
now uncountable, and for the total probability to be 1, each single value must
have 0 probability.

∫ ∞

−∞
f(x)dx = 1

Note that 0 is not really 0 in the sense that X = x could occur. For instance,

P (X = a)
P (X = b)

=
f(a)
f(b)

This can be seen from the following approximation. Let δ be a small incre-
ment, then:

P (x ≤ X ≤ x + δ) ≈ f(x)δ

Therefore, P (a ≤ X ≤ a + δ)/P (b ≤ X ≤ b + δ) ≈ f(a)δ
f(b)δ . Taking the limit

as δ goes to 0, we have P (X = a)/P (X = b) = f(a)/f(b).



All the concepts that we have seen in the discrete case, carry over to the
continuous case:

• Expectation: E[g(x)] =
∫∞
−∞ g(x)f(x)dx

• Independence: X and Y are independent ⇔ fX,Y (x, y) = fX(x)fY (y)

• Conditional density: fX|Y (x) = fX,Y (x, y)/fY (y)

To see why conditional probability is consistent with the new definition,
consider P (x ≤ X ≤ x + δ|y ≤ Y ≤ y + δ) for a small increment δ. We would
like this probability to be approximately fX|Y (x)δ. But,

P (x ≤ X ≤ x+δ|y ≤ Y ≤ y+δ) = P (x ≤ X ≤ x+δ, y ≤ Y ≤ y+δ)/P (y ≤ Y ≤ y+δ)

Therefore,

fX|Y (x)δ =
fX,Y (x, y)δ2

fY (y)δ

Taking the limit as δ goes to 0 gives the desired definition for fX|Y (x).
With this definition for conditional probability, Bayes’ rule for a continuous

random variable becomes:

fX|Y (x) =
fX,Y (x, y)

fY (y)
=

fY |X(y)fX(x)
fY (y)

Note fY (y) can be expressed as an integral in the same way P (Y = y) can
be expressed as a sum

∑
x P (Y = y|X = x)P (X = x) in the discrete case.

Therefore,

fY (y) =
∫

fY |X(y)fX(x)dx

Rewriting Bayes’ rule, we have:

fX|Y (x) =
fY |X(y)fX(x)∫
fY |X(y)fX(x)dx

We often use the simplified notation f(y|x) to mean fY |X(y). In this way,
we can drop the subscript from f as it can be inferred from the its argument.
Therefore,

f(x|y) =
f(x, y)
f(y)

=
f(y|x)f(x)∫
f(y|x)f(x)dx



2 Example of breaking a stick twice

The (continuous) uniform distribution is given by the following density function.

|
|

1/(b-a) -|- --------------------------
| | |
| | |

__|____|________________________|_____
a b

∫ b

a

1
b− a

dx =
x

b− a
|ba =

b

b− a
− a

b− a
= 1

Hold a stick of length l and break it uniformly at random, then repeat for
the remaining part. Let X represent the first breaking point, then f(x) = 1/l
(uniform from 0 to l).

f(x)

|
|

1/l--|------------------------------
| |
| |

__|_____________________________|_____
0 l

Similarly, f(y|x) = 1/x (also uniform from 0 to x <= l).

f(y|x)

|
|

1/x--|-----------------
| |
| |

__|________________|_____
0 x

What is f(x, y)? From the definition:

f(x, y) = f(x)f(y|x) =
1
lx

, 0 ≤ y ≤ x ≤ l

Note that



∫ l

0

∫ x

0

1
lx

dydx =
∫ l

0

1
l
dx = 1

We could have also evaluated the double integral in the other order:
∫ l

0

∫ l

y

1
lx

dxdy =
∫ 1

0

1
l

log x|lydy =
∫ l

0

1
l

log(l/y)dy = 1 (not showing the work)

Note how the bounds of the inner integral change depending on which vari-
able is integrated first. Note also that after integrating once, in the first case,
we obtain f(x), and in the second case we obtain (what should be) f(y). This is
always true: f(x, y) is called the joint density, and f(x) and f(y) are called the
marginal densities. Note that

∫
f(x, y)dx is nothing but

∫
f(y|x)f(x)dx = f(y).

As we have seen before, this phenomenon is also true in the discrete case but is
exhibited as a sum instead.

We conclude that

f(y) =
∫ l

y

1
lx

dx =
1
l

log(l/y), 0 ≤ y ≤ l

Computing expectations, E[X] = l/2 (easy). However, computing E[Y ]
involves computing the integral

∫ l

0
(y/l) log(l/y)dy, which is not very difficult,

but let’s use conditional expectation instead: E[Y ] = Ex[Ey[Y |X = x]] =
Ex[x/2] = 1/2 · Ex[x] = l/4 (much easier to compute).

For another example of expectation, let us compute E[XY ].

E[XY ] =
∫ l

0

∫ x

0

xyf(x, y)dydx =
∫ l

0

∫ x

0

y

l
dydx = l2/6

We can also reach the same result using nested expectation.

E[XY ] = E[E[XY |X]] = E[XE[Y |X]] = E[X2/2] =
∫ l

0

x2

2l
dx

The second equality follows from the fact that conditioned on X, E[XY |X] =
XE[Y |X] because X acts as a constant.

Finally, in the spirit of Bayes, we can now ask the following? What is f(x|y)?
The importance of this lies in the following: given that we observe what is left
of the stick, what can we say about how it was broken first?

f(x|y) =
f(y|x)f(x)

f(y)
=

1/lx

1/l · log(l/y)
=

1
x log(l/y)

, y ≤ x ≤ l

Let us interpret this result. If y = l, then f(x|y) = 1/(0 · x) for l ≤ x ≤ l.
This means the entire mass is located at x = l. This is obviously true since
that’s the only way we could have ended up with the entire stick. If y = 0, then
f(x|y) = 0/x for 0 ≤ x ≤ l, which is 0 for every x except when x = 0. This
means that the entire mass is located at x = 0, which is again the only way we
could have ended up with no stick at all. Note that in both cases, the integral
of this mass is still 1 at the limit.


