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1 Approximation of binomial with Poisson

Consider the binomial distribution

b(k, n, p) =

(
n
k

)
pk(1− p)n−k, 0 ≤ k ≤ n

Assume that n is large, and p is small, but np→ λ at the limit. For a fixed
λ:

b(0, n, p) =

(
n
0

)
p0(1− p)n = (1− p)n = (1− λ/n)n → e−λ

b(1, n, p) =

(
n
1

)
p(1− p)n−1 =

np

1− p
b(0, n, p)

=
λ

1− λ/n
b(0, n, p)→ λe−λ

b(2, n, p) =

(
n
2

)
p2(1− p)n−2 =

n(n− 1)p2

2(1− p)2
b(0, n, p)

=
n(n− 1)λ2

2n2(1− λ/n)2
b(0, n, p)→ λ2

2
e−λ

Continuing this way, we find that (when n is large)

b(k, n, p) ≈ p(k, λ) =
λke−λ

k!

where λ = np.
While p(k, λ) represents an approximation for the binomial probability (b, n, p),

p(k, λ) is a probability mass function on its own, known as the Poisson mass
function.

p(k, λ) =
λke−λ

k!
, k ≥ 0

Note that



∞∑
k=0

p(k, λ) = e−λ
∞∑
k=0

λk

k!
= e−λeλ = 1

What is the probability that among 500 people, exactly k will have their
birthday on new year’s day? If the people are chosen at random, then this is
500 Bernoulli trials with p = 1/365. Then, λ = 500/365 = 1.3699. For different
values of k, we have:

k p(k, λ) b(k, n, p)

0 0.2541 0.2537
1 0.3481 0.3484
2 0.2385 0.2388
3 0.1089 0.1089
4 0.0373 0.0372
5 0.0102 0.0101
6 0.0023 0.0023

2 The exponential distribution

Many statistical observations actually lead to a Poisson random variable. For
instance, consider a sequence of random events occurring over time. If we divide
time into small intervals of length 1/n (n is large), then:

• the probability of an event occurring within an interval becomes small,
call this pn

• the probability that more than one event occurs in an interval is negligible

Assuming that events are statistically independent, fix an interval of time
t and observe that it contains approximately nt small intervals of length 1/n.
Therefore, the probability of k events occurring during t is at the limit b(k, nt, pn).
Now if we conceive that npn → λ We can show that npn < 2np2n. The prob-
ability that no events occur in a small interval of length 1/n is the probabil-
ity that no events occur in any of its two halves of length 1/2n. Therefore,
1− pn = (1− p2n)(1− p2n) = 1− 2p2n + p22n. This means pn = 2p2n − p22n and
thus npn < 2np2n. In addition, npn → ∞ is not a sensible situation since this
would imply infinitely many occurrences even in the smallest intervals because
the expected number of events is tnpn), then (assuming npn → λ):

b(k, nt, pn) = b(k, nt, λt/nt) ≈ (λt)ke−λt

k!

where λ in the Poisson approximation is replaced with λt.
We will see that λ can be interpreted as a rate. Consider the time T until

the occurrence of the first event. Observe that P (T ≤ t) is the probability that
at least one events occurs during time interval t. Therefore,



P (T ≤ t) = 1− p(0, λt) = 1− e−λt

But,

P (T ≤ t) =

∫ t

0

fT (z)dz = 1− e−λt

where fT (t) is the probability density function (continuous) for T . If we
differentiate both sides we get:

d

dt

∫ t

0

f(z)dz =
d

dt
(1− e−λt)

fT (t) = λe−λt

This is known as the exponential distribution. We say that T is exponentially
distributed. Now we can compute the expected value of T (recall this is the time
until the occurrence of the first event):

E[T ] =

∫ ∞
0

tλe−λtdt =
1

λ

Therefore, λ can be interpreted as the rate of occurrence.

Example: Suppose that bus arrival is exponentially distributed. Given that
you have waited for some time τ , what is the probability that you will wait an
additional time t before the bus arrives?

Using Bayes’ rule:

P (T − τ > t|T > τ) = P (T > t+ τ |T > τ) =
P (T > τ |T > t+ τ)P (T > t+ τ)

P (T > τ)

=
1 · P (T > t+ τ)

P (T > τ)
=
e−λ(t+τ)

e−λτ
= e−λt = P (T > t)

This can be interpreted as follows: the fact that you have waited for some
time does not mean that you will wait less for the bus to arrive. Of course this is
not true if the bus is running on a fixed schedule. In fact, this is only a property
of the exponential distribution, known as the memoryless property:

P (T − τ > t|T > τ) = P (T > t)

The same result can be obtained if we work directly with the density fT (t).
For this, we need to use Baye’s rule with a mix of probabilities and densities.
To see this, recall that for a given continuous random variable X and a small δ,
P (x ≤ X ≤ x+ δ) ≈ δfX(x). Therefore, given an event E.



P (x ≤ X ≤ x+ δ|E) =
P (E|x ≤ X ≤ x+ δ)P (x ≤ X ≤ x+ δ)

P (E)

δfX(x|E) =
P (E|x ≤ X ≤ x+ δ)δfX(x)

P (E)

By taking the limit as δ → 0, we have

fX(x|E) =
P (E|X = x)fX(x)

P (E) =
∫
P (E|X = x)fX(x)dx

With a simplified notation:

f(x|E) =
P (E|X = x)f(x)∫
P (E|X = x)fX(x)dx

and similarly,

P (E|X = x) =
f(x|E)P (E)

f(x|E)P (E) + f(x|Ec)[1− P (E)]

Going back to the memoryless property:

f(t|T > τ) =
P (T > τ |T = t)f(t)

P (T > τ)

Since P (T > τ |T = t) is 0 when t ≤ τ and 1 otherwise, we get

f(t|T > τ) =

{
0 t ≤ τ
λeλ(t−τ) t > τ

Another example: Suppose y is the time before the first occurrence of a
radioactive decay which is measured by an instrument, but that, because there
is a delay built into the mechanism, the decay is recorded as having taken place
at x > y. We actually have a value of x, but would like to say what we can
about the value of y on the basis of this observation. Assume:

f(y) = e−y, y ≥ 0

f(x|y) = ke−k(x−y), x− y ≥ 0

Using Bayes,

f(y|x) =
f(x|y)f(y)

f(x)
=
ke−k(x−y)e−y

f(x)
=
ke−kxe(k−1)y

f(x)

Now f(x) can be computed as



f(x) =

∫ x

0

f(x, y)dy =

∫ x

0

ke−kxe(k−1)ydy =
ke−kx

k − 1
e(k−1)y|x0 =

ke−kx

k − 1
(e(k−1)x−1)

Therefore,

f(y|x) =
(k − 1)e(k−1)y

e(k−1)x − 1
, y ≤ x

3 DeMoivre-Laplace approximation

Consider a binomial random variable with parameters n and p, and let q = 1−p.
The DeMoivre-Laplace result says that if (k − np)3/n2 → 0 (intuitively k does
not deviate much from np as n→∞), then:

b(k, n, p) ≈ 1√
2πnqp

e−
(k−np)2

2npq =
1
√
npq

φ(
k − np
√
npq

)

where φ(x) = 1√
2π
e−

x2

2 . This result can be obtained using Stirling’s approx-

imation for factorials in the binomial coefficients. With some additional work,
it can also lead to (assuming both a and b satisfy the condition above):

b∑
k=a

b(k, n, p) ≈ 1
√
npq

b∑
k=a

φ(
−np
√
npq

+
k
√
npq

) ≈ Φ(
b+ 0.5− np
√
npq

)−Φ(
a− 0.5− np
√
npq

)

where Φ(x) =
∫ x
−∞ φ(y)dy.

Note that b(k, n, p) is the probability of k successes among n independent
Bernoulli trials. Therefore, b(k, n, p) = P (Sn = k), where Sn = X1 +X2 + . . .+
Xn, and Xi is a Bernoulli random variable.

P (a ≤ Sn ≤ b) ≈ Φ(
b+ 0.5− np
√
npq

)− Φ(
a− 0.5− np
√
npq

)

Example: Toss a fair coin 200 times. What is the probability that the number
of heads will be between 95 and 105. That’s b(95, 200, 0.5)+ . . .+b(105, 200, 0.5)
but this is a cumbersome computation. Using the approximation we have a
shortcut:

P (95 ≤ Sn ≤ 105) ≈ Φ(
105 + 0.5− 100√

50
)− Φ(

95− 0.5− 100√
50

)

= Φ(
5.5√

50
)− Φ(

−5.5√
50

) = 0.56331... (from tables)

The actual answer is 0.56325...
If instead of considering Sn, we consider



S∗n =
Sn − np√

npq

then for arbitrary fixed a and b (why?), the DeMoivre-Laplace result yields:

P (a ≤ S∗n ≤ b) ≈ Φ(b)− Φ(a)

This is a special case of the more general Central Limit Theorem.

4 The Gaussian (Normal) distribution

Note that np is the mean of the binomial distribution, and npq its variance. The
DeMoivre-Laplace approximation can be generalized to the following expression:

1√
2πσ

e−
(x−µ)2

2σ2

where µ is a mean and σ2 is a variance.
This expression then represents a density function on its own, known as

the Gaussian or normal density. An important property of this density is that
a linear combination of independent normal random variables gives a normal
random variable. In other words, let X = a1X1 + a2X2 . . .+ anXn, where Xi is
a normal random variable with mean µi and variance σ2

i . Then X is a normal
random variable with mean µ =

∑
i aiµi and variance

∑
i a

2
iσ

2
i . This can be

shown by finding the transform of X, E[esX ] (see below), which is equal to∏
iE[esXi ] because Xis are independent. Then comfirm that this transform is

the transform of a normal random variable with the desired mean and variance.
More importantly, the Gaussian distribution is at the heart of the most

celebrated result in probability theory, the Central Limit Theorem.

5 The Central Limit Theorem

LetX1, X2, . . . Xn be independent identically distributed random variables, with
finite mean µ and finite variance σ2. Define Sn = X1 + X2 + . . . + Xn. Then,
as n goes to infinity,

P (a ≤ Sn − nµ√
nσ

≤ b)→ Φ(b)− Φ(a)

Example: Consider a coin with probability p of getting a head. We toss
the coin n times. Let Sn be the number of heads. How large should n be to
guarantee that:

P (|Sn
n
− p| ≥ 0.01) ≤ 0.05

We would like |Sn−npn | ≤ 0.01 with probability at least 0.95. Let σ2 be the

variance of the Bernoulli trial corresponding to a coin toss. We need |Sn−np√
nσ
| ≤



0.01
√
n/σ with probability at least 0.95. Since σ2 = p(1−p), σ2 has a maximum

of 1/4, so σ ≤ 1/2. So it should be enough to guarantee |Sn−np√
nσ
| ≤ 0.02

√
n with

probability at least 0.95. Using the Central Limit Theorem, we need

Φ(0.02
√
n)− Φ(−0.02

√
n) ≥ 0.95

From the tables, we see that n ≥ 9604. Note that this is an approximation,
since n is not really infinity; moreover, the bound 0.02

√
n is not fixed and

depends on n. A better guarantee, but less practical, is to use Chebychev
inequality (which can also prove the weak law of large numbers):

P (|Sn
n
− p| ≥ ε) ≤ σ2

nε2

Therefore, we need 1/(4n0.012) ≤ 0.05 or n ≥ 50000.

Another example: Law of large numbers (weak form). Consider the following
probability:

P (|Sn
n
− p| ≤ ε) = P (|S∗n| ≤

√
nε

σ
) ≈ Φ(

√
nε/σ)− Φ(−

√
nε/σ)

Therefore, for any fixed ε, as n→∞,

P (|Sn
n
− p| ≤ ε)→ Φ(∞)− Φ(−∞) = 1

Again, this is not a very rigorous proof since the bounds in the use of the
Central Limit Theorem should not depend on n, but Chebychev inequality will
provide a rigorous proof of the same result. We say that Sn/n→ p in probability.
This is our intuitive notion that as n increases the average number of successes
is close to the probability of success (1/2 if coin is fair for instance).

Here’s a sketch of a “proof” for the Central Limit Theorem: Given a ran-
dom variable X, consider the transform E[esx] (a function of s). The transform
uniquely defines the PDF. The transform of a Gaussian (normal) random vari-

able with mean 0 and variance 1 can be easily computed to be es
2/2. Now

consider the transform of Sn−nµ√
nσ

.

E[e
s(
X1−µ√
nσ

+...+Xn−µ√
nσ

)
] = E[e

s
X1−µ√
nσ . . . e

sXn−µ√
nσ ]

Since Xi are independent and identically distributed, we get:

E[e
sX−µ√

nσ ]n

Note that for a given s, s/
√
n→ 0; therefore,

e
sX−µ√

nσ = 1 +
s√
n

X − µ
σ

+
s2

n

(X − µ)2

2σ2
+ o(s2/n)

where o(s2/n)
s2/n → 0. Therefore,



E[e
sX−µ√

nσ ]n = E[1 +
s√
n

X − µ
σ

+
s2

n

(X − µ)2

2σ2
+ o(s2/n)]n

= (1 + 0 +
s2

2n
+ o(s2/n))n = (1 +

s2/2 + o(s2/n)n

n
)n → e

s2/2+s2
o(s2/n)

s2/n → es
2/2

This is not a rigorous proof because it assumes that the transform exists
(which is not necessarily true). But it captures the essence of a proof. A more
rigorous proof based on a similar transform is possible.


