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1 Conjugate forms

Recall that

f(y|x) =
f(x|y)f(y)

f(x)

and since f(x) is not a function of y, we can write:

f(y|x) ∝ f(x|y)f(y)

In expressing f(y|x) as above, we can ignore any multiplicative constant in
f(x|y) and f(y) that does not involve y, as long as we impose the constraint
that:

∫ ∞

−∞
f(y|x)dy = 1

The prior f(y) is called conjugate if, when multiplied by f(x|y), produces
a posterior f(y|x) with the “same form” as f(y). In other words, the prior
and the posterior belong to the same class of distributions. This is particularly
interesting for two reasons:

• it simplifies the math (in particular the integral in the denominator)

• it produces a posterior of a similar nature to the prior, with updated
parameters based on the observed data

For the larger part of treating the subject of conjugate priors, the Bayesian
approach is introduced mearly as a framework that generalizes the standard sta-
tistical techniques. In most cases, the prior can be set in trivial (and sometimes
unrealistic) ways to mimic the non-Bayesian approach. It remains a philosoph-
ical question whether the knowledge of a better prior is really accessible or not
(e.g. if the prior is estimated from the data itself), but in some cases, it is
conceivable that such a knowledge exists, e.g. biological data.

2 Gaussian prior

If X|µ ∼ N(µ, σ2) then µ ∼ N(β, τ2) is a conjugate prior.

f(µ|x) ∝ e−
(x−µ)2

2σ2 e−
(µ−β)2

2τ2



With a little bit of rearrangement of terms, we find that:

µ|x ∼ N(
σ2β + τ2x

σ2 + τ2
,

σ2τ2

σ2 + τ2
)

If we have n independent observations x1 . . . xn, and each Xi ∼ N(µ, σ2),
then define x̄ =

∑

i xi/n. Note that a linear combination of Gaussian random
variables is Gaussian; therefore, X̄ ∼ N(µ, σ2/n), and:

µ|x̄ ∼ N(
σ2β/n + τ2x̄

σ2/n + τ2
,

σ2τ2/n

σ2/n + τ2
)

We can also show, however, that f(µ|x̄) = f(µ|x1, . . . xn) (in this case x̄ is
called a sufficient statistic for µ with respect to x).

f(µ|x1, . . . xn) ∝ e−
(µ−β)2

2τ2

n
∏

i=1

e−
(xi−µ)2

2σ2

But
n

∏

i=1

e−
(xi−µ)2

2σ2 ∝ e
− (

P

i xi/n−µ)2

2σ2/n

Therefore,

f(µ|x1, . . . xn) ∝ e−
(µ−β)2

2τ2 e
− (x̄−µ)2

2σ2/n

3 Does prior matter?

In finding f(µ|x̄) one might argue that limn→∞ x̄ = µ (in some probabilistic
notion of limit). For instance, the Chebychev inequality states:

P (|x̄ − µ| ≤ ǫ) ≥ 1 − σ2

nǫ2

So why even bother finding the posterior distribution of µ. The answer is that n
may not be large enough. But even if it is, the Bayesian analysis is in accordance
with the above limit. For example, when n → ∞, our Gaussian posterior for µ
(from above) becomes

µ|x̄ ∼ N(x̄, σ2/n)

This is generally true. A large amount of data overcomes any prior that is
positive everywhere. For instance, fix an small ǫ and assume that we observe
x̄ = z and |y − z| ≫ ǫ:

f(µ = z|x̄ = z) ∝ f(x̄ = z|µ = z)f(µ = z)

f(µ = y|x̄ = z) ∝ f(x̄ = z|µ = y)f(µ = y)



Assume that the prior satisfies f(µ = z)/maxy f(µ = y) = c for some constant
c > 0, then:

f(µ = z|x̄ = z)

f(µ = y|x̄ = z)
≥ c

f(x̄ = z|µ = z)

f(x̄ = z|µ = y)

Now for the small increment ǫ, f(x̄ = z|µ)2ǫ ≈ P (|x̄ − z| ≤ ǫ|µ). Therefore,

f(µ = z|x̄ = z)

f(µ = y|x̄ = z)
≥ c

P (|x̄ − z| ≤ ǫ|µ = z)

P (|x̄ − z| ≤ ǫ|µ = y)

By Chebychev inequality, the numerator goes to 1 and the denominator goes
to 0 when n goes to infinity. Therefore, if the data is large, given x̄ = z, the
posterior µ = z is far more likely than any other value y away from z, regardless
of the chosen prior.

4 Deciding on the mean of two groups

Assume we have two groups of statistically independent values x1 . . . xnx
, and

y1, . . . yny
, and that Xi ∼ N(µx, σ2

x) and Yj ∼ N(µy, σ2
y). Assume further that

µx and µy are unknown while σ2
x and σ2

y are known. We would like to decide
whether µx = µy.

A classical approach is to compute the following statistic:

z =
x̄ − ȳ

√

σ2
x/nx + σ2

y/ny

where x̄ and ȳ represent the sample means, i.e. x̄ =
∑

i xi/nx and ȳ =
∑

j yj/ny. Note that Z ∼ N(
µx−µy√

σ2
x/nx+σ2

y/ny
, 1). Therefore, µx = µy iff Z ∼

N(0, 1).
Given the computed value for z, we then check how “extreme” it is, i.e. com-

pute (the P -value) P (Z > |z|) = 1−P (Z ≤ |z|) = Φ(−|z|). Typically, a value of
Φ(−|z|) ≤ 0.05 (arbitrary) suggests that z is extreme and, therefore, µx 6= µy.
However, this approach is not very informative; for instance, if Φ(−|z|) > 0.05,
then we have no reason to reject that µx = µy, but we have not strong enough
reason to believe it either.

Regardless of the pros and cons of such an approach, we will show that
it represents a special case of the more general Bayesian approach. We will
adopt a simplified model to illustrate this fact, so assume that µx and µy are
independent and that:

µx ∼ µy ∼ N(β, τ2)

In this case,

f(µx, µy|x1 . . . xnx
, y1 . . . yny

) ∝ e
− (x̄−µx)2

2σ2
x/nx e

− (ȳ−µy)2

2σ2
x/ny e−

(µx−β)2

2τ2 e−
(µy−β)2

2τ2



We get,

µx|x̄ ∼ N(
σ2

xβ/nx + τ2x̄

σ2
x/nx + τ2

,
σ2

xτ2/nx

σ2
x/nx + τ2

)

µy|ȳ ∼ N(
σ2

yβ/ny + τ2ȳ

σ2
y/ny + τ2

,
σ2

yτ2/ny

σ2
y/ny + τ2

)

For simplicity of illustration, assume that nx = ny = n and σ2
x = σ2

y = σ2,
then:

µx − µy|x̄, ȳ ∼ N(
τ2(x̄ − ȳ)

σ2/n + τ2
,

2σ2τ2/n

σ2/n + τ2
)

Denoting τ2(x̄−ȳ)
σ2/n+τ2 by m and 2σ2τ2/n

σ2/n+τ2 by v2, then

1 − Φ(
b − m

v
) = Φ(

m − b

v
)

gives P (µx−µy > b|x̄, ȳ), which can be obtained for several values of b. This
is now more informative as it gives the probability that µx will exceed µy by a
certain amount. In particular, we can find P (µx > µy|x̄, ȳ) by setting b to 0.

One may argue, however, that this was obtained by assuming a prior for µx

and µy which, in principle, may be unknown. In that case, as Bayes himself
argued, one could assume a uniform prior to indicate that no value is more
likely than another, i.e. f(µ) = c (a constant). Such prior, of course, does
not constitute a valid density function because

∫

f(µ)dµ = ∞. We call it
“improper”. We will justify this later. For now, if f(µx) ∝ f(µy) ∝ 1, we get:

f(µx, µy|x1 . . . xnx
, y1 . . . yny

) ∝ e
− (x̄−µx)2

2σ2
x/n e

− (ȳ−µy)2

2σ2
x/m

which implies that:

µx|x̄ ∼ N(x̄, σ2
x/nx)

µy|ȳ ∼ N(ȳ, σ2
y/ny)

µx − µy|x̄, ȳ ∼ N(x̄ − ȳ, σ2
x/nx + σ2

y/ny)

Therefore, by making z(b) = b−(x̄−ȳ)√
σ2

x/nx+σ2
y/ny

, 1 − Φ(z(b)) = Φ(−z(b)) gives

P (µx −µy > b|x̄, ȳ). In particular, z = −z(0) and, therefore, when b = 0 we are
looking at Φ(z).

Φ(z) =

{

Φ(−|z|) = P-Value z ≤ 0
1 − Φ(−|z|) = 1 − P-value z ≥ 0

Of particular interest is the second case (z ≥ 0 i.e. x̄ ≥ ȳ), which shows that
a small P-value implies a higher probability that µx > µy (thus leading to reject
the hypothesis that µx = µy). This gives a better interpretation of the P -value.



We conclude that the P -value approach is a special case of a Bayesian approach
with no prior information. Note, however, that the terminology/interpretation
of the Bayesian approach is more precise, as the P -value is not the probability
that µx = µy.

Now, how can we justify the use of an improper uniform prior? One way is
to simply let τ2 → ∞ in the Gaussian prior (note that this limiting procedure
yields the same expression for the uniform prior). Another way is to observe
that a uniform density f(µ) = c is valid over an interval of length 1/c. There-
fore, when c → 0, the uniform prior covers the entire range from −∞ to ∞.
This suggests that if c is small enough, the improper density becomes an ap-
proximation of a valid uniform density. This is justified by the following result.

Consider n independent random samples x1 . . . xn taken from N(µ, σ2) where
σ2 is known. Suppose that there exist positive constants α, ǫ, M and c, such
that

(1 − ǫ)c ≤ f(µ) ≤ (1 + ǫ)c µ ∈ [x̄ − λσ√
n
, x̄ + λσ√

n
]

f(µ) ≤ Mc otherwise

where
2Φ(−λ) = α

Then for µ ∈ [x̄ − λσ√
n
, x̄ + λσ√

n
],

1 − ǫ

(1 + ǫ)(1 − α) + Mα

[√
n

σ
φ(

µ − x̄

σ/
√

n
)

]

≤

f(µ|x1, . . . xn)

≤ 1 + ǫ

(1 − ǫ)(1 − α)

[√
n

σ
φ(

µ − x̄

σ/
√

n
)

]

The proof is straight forward using Bayes’ rule, but let us consider a nu-
merical example before proving it. Suppose λ ≈ 2 so that α = 0.05. Consider
the values of µ within the interval extending 2σ/

√
n either side of x̄. It may be

judged that prior to taking the sample, no one value of µ in the interval was
more probable than any other so that f(µ) = c within the interval, and we can
put ǫ = 0. Consider the values of µ outside the interval. It may be judged that
prior to taking the sample, no value of µ there is more than twice as probable
as any value of µ in the interval, i.e. M = 2. Then the posterior density for µ
lies between (1.05)−1 and (0.95)−1 of the normal density within the interval.

The proof is as follows, let I be the interval [x̄ − λσ√
n
, x̄ + λσ√

n
]:

f(µ|x1 . . . xn) =

1√
2π/nσ

e
− (µ−x̄)2

2σ2/n f(µ)

∫

µ∈I
1√

2π/nσ
e
− (µ−x̄)2

2σ2/n f(µ)dµ +
∫

µ6∈I
1√

2π/nσ
e
− (µ−x̄)2

2σ2/n f(µ)dµ



=

1√
2π/nσ

e
− (µ−x̄)2

2σ2/n f(µ)

∫

z∈[−λ,λ]
1√
2π

e−
z2

2 f(µ)dz +
∫

z 6∈[−λ,λ]
1√
2π

e−
z2

2 f(µ)dz

Now note that (1 − ǫ)c ≤ f(µ) ≤ (1 + ǫ)c when z ∈ [−λ, λ] and f(µ) ≤
Mc when z 6∈ [−λ, λ], and that

∫ λ

−λ
1√
2π

e−z2/2dz = 1 − α by definition of λ.

Combining these facts yields the result.
An interpretation of this result is as follows: As long as the prior for µ is

uniform in a large enough interval centered around x̄, the posterior for µ is
almost normal. This type of reasoning involving an “improper” uniform prior
can, of course, be applied for densities other than normal.

5 Lindley’s paradox

Lindley’s paradox arises when we combine knowledge and lack of knowledge in
a prior. This is usually done by using a prior with a mixture of discrete mass
and continuous density. For instance, suppose we want to decide on the mean µ
of a sampe x1 . . . xn, and that prior opinion about µ is a mixture of a point mass
p at a specific value µ0 (P (µ = µ0) = p), and the remaining probability 1 − p
distributed uniformly (lack of knowledge) over an interval of length L centered
around µ0. Therefore,

f(µ) = pδ(µ − µ0) + (1 − p)
1

L
µ ∈ [µ0 −

L

2
, µ0 +

L

2
]

where δ(x) is the Dirac function, i.e. δ(x) = 0 for x 6= 0, and

∫ b

a

f(x)δ(x)dx =

{

f(0) 0 ∈ [a, b]
0 0 6∈ [a, b]

This is not really a function, but rather a shorthand for a limiting process.
For instance, consider the function δn defined as 1/n is the interval [−n/2, n/2].
Think of the delta function as the limit of δn, as n goes to 0. Obviously,
δ(x) = limn→0 δn(x) = 0 for every x 6= 0. Moreover,

lim
n→0

∫ b

a

f(x)δn(x)dx

If 0 ∈ [a, b], this is

= lim
n→0

∫ n/2

−n/2

f(x)

n
dx

= lim
n→0

1

n

∫ n/2

−n/2

f(x)dx

= lim
n→0

1

n
f(nc)

∫ n/2

−n/2

dx = f(0)



for some −1/2 < c < 1/2 (by the mean value theorem).
Note that

P (µ = µ0) =

∫ µ0

µ0

pδ(µ − µ0)dµ +

∫ µ0

µ0

(1 − p)
1

L
dµ = p + 0 = p

Let us first consider Bayes’ rule for a general mixture prior (α + β = 1)

f(θ) = αg(θ) + βh(θ)

for which we are interested in computing the posterior f(θ|x) .

f(θ|x) =
f(x|θ)[αg(θ) + βh(θ)]

f(x)
=

αf(x|θ)g(θ)

f(x)
+

βf(x|θ)h(θ)

f(x)

Note that

f(x|θ)g(θ) = g(θ|x)g(x) = g(θ|x)

∫

f(x|θ)g(θ)dθ

Similarly,

f(x|θ)h(θ) = h(θ|x)h(x) = h(θ|x)

∫

f(x|θ)h(θ)dθ

Therefore,

f(θ|x) =
αg(θ|x)

∫

f(x|θ)g(θ)dθ

f(x)
+

βh(θ|x)
∫

f(x|θ)h(θ)dθ

f(x)
= α(x)g(θ|x)+β(x)h(θ|x)

where
α(x)

β(x)
=

α
∫

f(x|θ)g(θ)dθ

β
∫

f(x|θ)h(θ)dθ

and
α(x) + β(x) = 1

Let us apply this to our particular case for x̄ and µ, we have:

α = p

β = 1 − p

f(x̄|µ) =
1

√

2π/nσ
e
− (x̄−µ)2

2σ2/n

g(µ) = δ(µ − µ0)

h(µ) =
1

L

Let us compute α(x̄).

α(x̄)

1 − α(x̄)
=

p
∫ µ0+L/2

µ0−L/2
f(x̄|µ)δ(µ − µ0)dµ

(1 − p)
∫ µ0+L/2

µ0−L/2
f(x̄|µ) 1

Ldµ
≥ pf(x̄|µ0)

(1 − p) 1
L

∫ ∞
−∞ f(x̄|µ)dµ

=
pf(x̄|µ0)

(1 − p) 1
L



Assume that we are observing x̄ = µ0 + cσ/
√

n for some constant c, then:

α(x̄)

1 − α(x̄)
≥ Lpe−c2/2

(1 − p)
√

2π/nσ

Note that the limit as n goes to infinity of the right hand side is infinity.
Therefore, α(x̄) → 1 for x̄ = µ0 + cσ/

√
n as n goes to infinity, i.e. f(µ|x̄) →

g(µ|x̄). Now,

g(µ|x̄) =
f(x̄|µ)g(µ)

∫

f(x̄|µ)g(µ)dµ

which is 0 when µ 6= µ0 and δ(0) when µ = µ0; therefore,

g(µ|x̄) = δ(µ − µ0)

This means that the posterior for µ is a point mass at µ = µ0. In other
words, given that we are observing x̄ = µ0 + cσ/

√
n, P (µ = µ0) ≈ 1. Note that

this is true regardless of how small p is, and how large c is (as long as n is large
enough). When c is large, however, a classical P -value approach will refute the
hypothesis that µ = µ0 since x̄ is c standard deviations away from the mean.
That’s the paradox!


