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1 A cool function, Γ(x) (Gamma)

The Gamma function is defined as follows:

Γ(x) =

∫

∞

0

tx−1e−tdt

For x > 1, if we integrate by parts (
∫

udv = uv −
∫

vdu), we have:

Γ(x) = −tx−1e−t|∞0 −
∫

∞

0

−(x − 1)tx−2e−tdt

= 0 + (x − 1)

∫

∞

0

tx−2e−tdt

= (x − 1)Γ(x − 1)

Note also that Γ(1) =
∫

∞

0
e−tdt = 1. We conclude that if x ≥ 1 is an integer,

Γ(x) = (x − 1)!. Therefore, the Gamma function represents a generalization of
the factorial function defined only on the non-negative integers. Given any
a > 0, the product of the following k terms can now be expressed as:

a · (a + 1) · (a + 2) · . . . · (a + k − 1) =
Γ(a + k)

Γ(a)

Perhaps the most famous value of the Gamma function for a non-integer is
Γ(1/2) =

√
π.

The Gamma function is a component of various probability density functions
as we will see later on.

2 Chi-squared density

Let X1 . . . Xn be independent normal variables such that Xi ∼ N(0, 1), and
consider the sum V = X2

1 + . . . X2
n. What is the probability density of V ?

For simplicity, let us first stop the sum at X2
1 , i.e. the probability density of

X2 if X ∼ N(0, 1).

P (−√
y − δ ≤ X ≤ −√

y) + P (
√

y ≤ X ≤ √
y + δ) = P (y ≤ X2 ≤ (

√
y + δ)2)



fX(−√
y)δ + fX(

√
y)δ = fX2(y)(δ2 + 2

√
yδ)

Taking the limit as δ → 0, we have:

fX2(y) =
φ(−√

y) + φ(
√

y)

2
√

y
=

1

2
√

π
(
y

2
)

1
2−1e−

y
2

The expression above is arranged to reveal a form similar to the integrand
of the Gamma function. Therefore, using a change of variable t = y/2:

∫

∞

0

(
y

2
)

1
2−1e−

y
2 dy = 2

∫

∞

0

t
1
2−1e−tdt = 2Γ(

1

2
) = 2

√
π

This shows that the density integrates to 1. Another way for obtaining
the above density is to use an appropriate change of variable. To illustrate
this general technique, assume that fX(x) is given, and that we are interested
in finding fY (y) where y = g(x). Observe that dy = g′(x)dx and, therefore,
dx = dy/g′(x). Hence,

∫

fX(x)dx =

∫

fX(x)

|g′(x)|dy = 1

with appropriate adjustment of the integral range. If x = g−1(y) is uniquely
obtained from y, then we can write the above as follows:

∫

fX(g−1(y))

|g′(g−1(y))|dy = 1

implying that

fY (y) =
fX(g−1(y))

|g′(g−1(y))

If, however, x is not uniquely obtained from y, then we add up the contribution
of all solutions. Let us apply this to our example where fX(x) = φ(x) and
y = g(x) = x2. We have g′(x) = 2x and x = ±√

y. Therefore, |g′(x)| = 2
√

y.

fY (y) =
fX(

√
y) + fX(−√

y)

2
√

y

and since fX(x) = φ(x) is symmetric, we get

fY (y) =
2φ(

√
y)

2
√

y
=

φ(
√

y)
√

y
=

1

2
√

π
(
y

2
)

1
2−1e−

y
2

which is as obtained before.
The above suggests also that we can generalize the form of the density for

k ≥ 1 as follows:

1

2Γ(k
2 )

(
y

2
)

k
2−1e−

y
2



where fX2(y) being the special case when k = 1. This is called the χ2 (Chi-
squared) density with parameter k, or k degrees of freedom. It turns out χ2 is
exactly the density for V when k = n.

V = X2
1 + . . . + X2

n ∼ χ2
n

This is because the sum of two χ2 independent random variables with pa-
rameters k1 and k2 is a χ2 random variable with parameter k = k1 + k2. To
prove this, one can use the transform of a χ2 random variable. Recall that the
transform of a random variable Z is E[esZ ]. Therefore, the transform of Z1 +Z2

is E[es(Z1+Z2)] = E[esZ1+sZ2 ] = E[esZ1esZ2 ] = E[esZ1 ]E[esZ2 ] if Z1 and Z2 are
independent. It is easy to show that the transform of a χ2

k random variable
is (1 − 2s)−k/2 and, therefore, the transform of the sum of two independent
χ2 random variables with parameters k1 and k2 is (1 − 2s)−k1/2(1 − 2s)−k2/2 =
(1 − 2s)−(k1+k2)/2, which is the transform of a χ2

k random variable where k =
k1 + k2.

Example: Fairness of dice. Consider throwing a pair of dice, and let S be
the random variable corresponding to a given total on a single throw. If the
pair of dice is fair, S can take the following values with the given probabilities:

2 3 4 5 6 7 8 9 10 11 12
1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

Assume that we throw the pair of dice n = 144 times, and let Ys be the ran-
dom variable corresponding to the number of times we obtain a particular value
s for S. Note that Ys is the sum of n Bernoulli trials with success probability
ps as given in the above table. Consider the following real data:

s 2 3 4 5 6 7 8 9 10 11 12
ys 2 4 10 12 22 29 21 15 14 9 6
nps 4 8 12 16 20 24 20 16 12 8 4

How can we test whether or not the given pair of dice is loaded? For s =
2, . . . 12, and in general for s = 1 . . . k, consider the following random variable:

Zs =
Ys − nps

√

nps(1 − ps)

where Ys is the number of times outcome s occurs, and ps is the corresponding
probability (thus nps is the expected number of times s should occur).

A natural way is to consider
∑

i Z2
i to see whether this sum is (probabilisti-

cally) too high or too low. By the central limit theorem, Zs ∼ N(0, 1) when n is
large. Therefore,

∑

s Z2
s ∼ χ2

k. But the Zs are not completely independent! For
instance, Yk can be computed if Y1, . . . , Yk−1 are known (because

∑

s Ys = n).
Instead, let us consider

Z∗

s =
Ys − nps√

nps



and, for simplicity, assume we only have two possible outcomes (Y1 + Y2 =
n, p1 + p2 = 1).

Z∗
2

1 + Z∗
2

2 =
(Y1 − np1)

2

np1
+

(Y2 − np2)
2

np2
=

(Y1 − np1)
2

np1
+

(−Y1 + np1)
2

n(1 − p1)

=
(Y1 − np1)

2

np1(1 − p1)
= Z2

1

We know that Z2
1 ∼ χ2

1. In general (proof omitted), if k − d variables are
sufficient to determine all k, then

V =

k
∑

i=1

Z∗
2

i ∼ χ2
k−d

Applying this to our dice problem (k = 11, d = 1), we compute V = 7.14583.

From the table for χ2
10, we can find P (V ≤ 7.14583) =

∫ V

0
χ2

10(y)dy, and see that
V = 7.14583 falls within the entries for 25% and 50%, so it is not significantly
high or significantly low; thus the pair of dice is satisfactory (not loaded).

3 Chi-squared prior

To Keep a Bayesian spirit, the χ2 density provides a conjugate prior in a number
of cases. For instance, let x1, . . . , xn be independent Poisson random variables
with parameter λ. Then

P (x1, . . . , xn|λ) ∝ λT e−nλ

where T =
∑

i xi.
If mλ ∼ χ2

k for a prior, i.e.

f(λ) =
m

2Γ(k/2)
(
mλ

2
)k/2−1e−

mλ
2

then

f(λ|x1, . . . , xn) ∝ λT e−nλ(
mλ

2
)k/2−1e−

mλ
2

f(λ|x1, . . . , xn) ∝ (
(2n + m)λ

2
)(k+2T )/2−1e−

(2n+m)λ
2

(2n + m)λ|x1, . . . , xn ∼ χ2
k+2T

Now consider n independent Gaussian random variables with a variance σ2

that is unknown (mean µ is known).

Xi|σ2 ∼ N(µ, σ2)



What would be an appropriate prior for σ2 (a conjugate one)? Note that

f(σ2|x1, . . . , xn) ∝ 1

σn
e−

P

i(xi−µ)2

2σ2 f(σ2)

Let S =
∑

i(xi − µ)2, then:

f(σ2|x1, . . . , xn) ∝ (1/σ2)n/2e−
S/σ2

2 f(σ2)

Therefore,

f(σ2|x1, . . . , xn)| dσ2

d(1/σ2)
| ∝ (1/σ2)n/2e−

S/σ2

2 f(σ2)| dσ2

d(1/σ2)
|

The term |dσ2/d(1/σ2)| adjusts for changing the variable from σ2 to 1/σ2

so that integration of the density is with respect to 1/σ2 rather than σ2. We
get:

f(1/σ2|x1, . . . , xn) ∝ (1/σ2)n/2e−
S/σ2

2 f(1/σ2)

If S0/σ2 ∼ χ2
k for some S0, then:

f(1/σ2) ∝ (1/σ2)k/2−1e−
S0/σ2

2

Therefore,

f(1/σ2|x1, . . . , xn) ∝ (1/σ2)
n+k

2 −1e−
(S+S0)/σ2

2

(S + S0)/σ2|x1, . . . , xn ∼ χ2
n+k

Example: Consider the following sample (n = 20):

9 18 21 26 14
18 22 27 15 19
22 29 15 19 24
30 16 20 24 32

We can compute x̄ ≈ 21, and let us, for simplicity, assume that this is the
real value of µ. In this case, S = 664. Now one may argue that knowledge of k
and S0 is not available. In this case, let k = 0 and S0 = 0 to get the following
(improper) prior:

f(1/σ2) ∝ (1/σ2)−1

Therefore, the posterior will be given by

644/σ2 ∼ χ2
20

and from the tables we see that σ2 is between 20 and 75 with probability 0.95.



f(log σ2) ∝ (1/σ2)−1/|d(log σ2)

d(1/σ2)
)| = (1/σ2)−1/| − d(log(1/σ2))

d(1/σ2)
)| ∝ 1

which is uniform in log σ2 ∈ (−∞,+∞).
This prompts the following question: is the improper uniform prior equiva-

lent to some conjugate form? In other words, is there a function g(θ) such that
f(θ|x) has a valid density when f(g(θ)) ∝ 1? This is equivalent to the following
statement (why?):

f(θ|x) ∝ f(x|θ)|dg(θ)

dθ
|

The answer to this of course depends on f(x|θ). For our example, it is clear
that we need

|dg(1/σ2)

d(1/σ2)
| = (1/σ2)−1

which is satisfied if g(1/σ2) = log σ2. If we recall the example of deciding on
the mean µ of independent Gaussian samples, g(µ) = µ is appropriate.

Example: Let f(x|λ) = λe−λx (exponential density). Then

f(λ|x) ∝ λe−λx|dg(λ)

dλ
|

Obviously, g(λ) = log λ provides a valid posterior density (exponential).
Therefore, the improper uniform prior f(log λ) ∝ 1 works.


