More on Bayes and conjugate forms

Saad Mneimneh

1 A cool function, $\Gamma(x)$ (Gamma)

The Gamma function is defined as follows:

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

For $x>1$, if we integrate by parts $\left(\int u d v=u v-\int v d u\right)$, we have:

$$
\begin{gathered}
\Gamma(x)=-\left.t^{x-1} e^{-t}\right|_{0} ^{\infty}-\int_{0}^{\infty}-(x-1) t^{x-2} e^{-t} d t \\
=0+(x-1) \int_{0}^{\infty} t^{x-2} e^{-t} d t \\
=(x-1) \Gamma(x-1)
\end{gathered}
$$

Note also that $\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=1$. We conclude that if $x \geq 1$ is an integer, $\Gamma(x)=(x-1)$!. Therefore, the Gamma function represents a generalization of the factorial function defined only on the non-negative integers. Given any $a>0$, the product of the following k terms can now be expressed as:

$$
a \cdot(a+1) \cdot(a+2) \cdot \ldots \cdot(a+k-1)=\frac{\Gamma(a+k)}{\Gamma(a)}
$$

Perhaps the most famous value of the Gamma function for a non-integer is $\Gamma(1 / 2)=\sqrt{\pi}$.

The Gamma function is a component of various probability density functions as we will see later on.

2 Chi-squared density

Let $X_{1} \ldots X_{n}$ be independent normal variables such that $X_{i} \sim N(0,1)$, and consider the sum $V=X_{1}^{2}+\ldots X_{n}^{2}$. What is the probability density of V ?

For simplicity, let us first stop the sum at X_{1}^{2}, i.e. the probability density of X^{2} if $X \sim N(0,1)$.

$$
P(-\sqrt{y}-\delta \leq X \leq-\sqrt{y})+P(\sqrt{y} \leq X \leq \sqrt{y}+\delta)=P\left(y \leq X^{2} \leq(\sqrt{y}+\delta)^{2}\right)
$$

$$
f_{X}(-\sqrt{y}) \delta+f_{X}(\sqrt{y}) \delta=f_{X^{2}}(y)\left(\delta^{2}+2 \sqrt{y} \delta\right)
$$

Taking the limit as $\delta \rightarrow 0$, we have:

$$
f_{X^{2}}(y)=\frac{\phi(-\sqrt{y})+\phi(\sqrt{y})}{2 \sqrt{y}}=\frac{1}{2 \sqrt{\pi}}\left(\frac{y}{2}\right)^{\frac{1}{2}-1} e^{-\frac{y}{2}}
$$

The expression above is arranged to reveal a form similar to the integrand of the Gamma function. Therefore, using a change of variable $t=y / 2$:

$$
\int_{0}^{\infty}\left(\frac{y}{2}\right)^{\frac{1}{2}-1} e^{-\frac{y}{2}} d y=2 \int_{0}^{\infty} t^{\frac{1}{2}-1} e^{-t} d t=2 \Gamma\left(\frac{1}{2}\right)=2 \sqrt{\pi}
$$

This shows that the density integrates to 1 . Another way for obtaining the above density is to use an appropriate change of variable. To illustrate this general technique, assume that $f_{X}(x)$ is given, and that we are interested in finding $f_{Y}(y)$ where $y=g(x)$. Observe that $d y=g^{\prime}(x) d x$ and, therefore, $d x=d y / g^{\prime}(x)$. Hence,

$$
\int f_{X}(x) d x=\int \frac{f_{X}(x)}{\left|g^{\prime}(x)\right|} d y=1
$$

with appropriate adjustment of the integral range. If $x=g^{-1}(y)$ is uniquely obtained from y, then we can write the above as follows:

$$
\int \frac{f_{X}\left(g^{-1}(y)\right)}{\left|g^{\prime}\left(g^{-1}(y)\right)\right|} d y=1
$$

implying that

$$
f_{Y}(y)=\frac{f_{X}\left(g^{-1}(y)\right)}{\mid g^{\prime}\left(g^{-1}(y)\right)}
$$

If, however, x is not uniquely obtained from y, then we add up the contribution of all solutions. Let us apply this to our example where $f_{X}(x)=\phi(x)$ and $y=g(x)=x^{2}$. We have $g^{\prime}(x)=2 x$ and $x= \pm \sqrt{y}$. Therefore, $\left|g^{\prime}(x)\right|=2 \sqrt{y}$.

$$
f_{Y}(y)=\frac{f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})}{2 \sqrt{y}}
$$

and since $f_{X}(x)=\phi(x)$ is symmetric, we get

$$
f_{Y}(y)=\frac{2 \phi(\sqrt{y})}{2 \sqrt{y}}=\frac{\phi(\sqrt{y})}{\sqrt{y}}=\frac{1}{2 \sqrt{\pi}}\left(\frac{y}{2}\right)^{\frac{1}{2}-1} e^{-\frac{y}{2}}
$$

which is as obtained before.
The above suggests also that we can generalize the form of the density for $k \geq 1$ as follows:

$$
\frac{1}{2 \Gamma\left(\frac{k}{2}\right)}\left(\frac{y}{2}\right)^{\frac{k}{2}-1} e^{-\frac{y}{2}}
$$

where $f_{X^{2}}(y)$ being the special case when $k=1$. This is called the χ^{2} (Chisquared) density with parameter k, or k degrees of freedom. It turns out χ^{2} is exactly the density for V when $k=n$.

$$
V=X_{1}^{2}+\ldots+X_{n}^{2} \sim \chi_{n}^{2}
$$

This is because the sum of two χ^{2} independent random variables with parameters k_{1} and k_{2} is a χ^{2} random variable with parameter $k=k_{1}+k_{2}$. To prove this, one can use the transform of a χ^{2} random variable. Recall that the transform of a random variable Z is $E\left[e^{s Z}\right]$. Therefore, the transform of $Z_{1}+Z_{2}$ is $E\left[e^{s\left(Z_{1}+Z_{2}\right)}\right]=E\left[e^{s Z_{1}+s Z_{2}}\right]=E\left[e^{s Z_{1}} e^{s Z_{2}}\right]=E\left[e^{s Z_{1}}\right] E\left[e^{s Z_{2}}\right]$ if Z_{1} and Z_{2} are independent. It is easy to show that the transform of a χ_{k}^{2} random variable is $(1-2 s)^{-k / 2}$ and, therefore, the transform of the sum of two independent χ^{2} random variables with parameters k_{1} and k_{2} is $(1-2 s)^{-k_{1} / 2}(1-2 s)^{-k_{2} / 2}=$ $(1-2 s)^{-\left(k_{1}+k_{2}\right) / 2}$, which is the transform of a χ_{k}^{2} random variable where $k=$ $k_{1}+k_{2}$.

Example: Fairness of dice. Consider throwing a pair of dice, and let S be the random variable corresponding to a given total on a single throw. If the pair of dice is fair, S can take the following values with the given probabilities:

2	3	4	5	6	7	8	9	10	11	12
$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

Assume that we throw the pair of dice $n=144$ times, and let Y_{s} be the random variable corresponding to the number of times we obtain a particular value s for S. Note that Y_{s} is the sum of n Bernoulli trials with success probability p_{s} as given in the above table. Consider the following real data:

s	2	3	4	5	6	7	8	9	10	11	12
y_{s}	2	4	10	12	22	29	21	15	14	9	6
$n p_{s}$	4	8	12	16	20	24	20	16	12	8	4

How can we test whether or not the given pair of dice is loaded? For $s=$ $2, \ldots 12$, and in general for $s=1 \ldots k$, consider the following random variable:

$$
Z_{s}=\frac{Y_{s}-n p_{s}}{\sqrt{n p_{s}\left(1-p_{s}\right)}}
$$

where Y_{s} is the number of times outcome s occurs, and p_{s} is the corresponding probability (thus $n p_{s}$ is the expected number of times s should occur).

A natural way is to consider $\sum_{i} Z_{i}^{2}$ to see whether this sum is (probabilistically) too high or too low. By the central limit theorem, $Z_{s} \sim N(0,1)$ when n is large. Therefore, $\sum_{s} Z_{s}^{2} \sim \chi_{k}^{2}$. But the Z s are not completely independent! For instance, Y_{k} can be computed if Y_{1}, \ldots, Y_{k-1} are known (because $\sum_{s} Y_{s}=n$).

Instead, let us consider

$$
Z_{s}^{*}=\frac{Y_{s}-n p_{s}}{\sqrt{n p_{s}}}
$$

and, for simplicity, assume we only have two possible outcomes $\left(Y_{1}+Y_{2}=\right.$ $n, p_{1}+p_{2}=1$).

$$
\begin{aligned}
Z_{1}^{*^{2}}+Z_{2}^{*^{2}}=\frac{\left(Y_{1}-n p_{1}\right)^{2}}{n p_{1}} & +\frac{\left(Y_{2}-n p_{2}\right)^{2}}{n p_{2}}=\frac{\left(Y_{1}-n p_{1}\right)^{2}}{n p_{1}}+\frac{\left(-Y_{1}+n p_{1}\right)^{2}}{n\left(1-p_{1}\right)} \\
& =\frac{\left(Y_{1}-n p_{1}\right)^{2}}{n p_{1}\left(1-p_{1}\right)}=Z_{1}^{2}
\end{aligned}
$$

We know that $Z_{1}^{2} \sim \chi_{1}^{2}$. In general (proof omitted), if $k-d$ variables are sufficient to determine all k, then

$$
V=\sum_{i=1}^{k} Z_{i}^{*^{2}} \sim \chi_{k-d}^{2}
$$

Applying this to our dice problem $(k=11, d=1)$, we compute $V=7.14583$. From the table for χ_{10}^{2}, we can find $P(V \leq 7.14583)=\int_{0}^{V} \chi_{10}^{2}(y) d y$, and see that $V=7.14583$ falls within the entries for 25% and 50%, so it is not significantly high or significantly low; thus the pair of dice is satisfactory (not loaded).

3 Chi-squared prior

To Keep a Bayesian spirit, the χ^{2} density provides a conjugate prior in a number of cases. For instance, let x_{1}, \ldots, x_{n} be independent Poisson random variables with parameter λ. Then

$$
P\left(x_{1}, \ldots, x_{n} \mid \lambda\right) \propto \lambda^{T} e^{-n \lambda}
$$

where $T=\sum_{i} x_{i}$.
If $m \lambda \sim \chi_{k}^{2}$ for a prior, i.e.

$$
f(\lambda)=\frac{m}{2 \Gamma(k / 2)}\left(\frac{m \lambda}{2}\right)^{k / 2-1} e^{-\frac{m \lambda}{2}}
$$

then

$$
\begin{gathered}
f\left(\lambda \mid x_{1}, \ldots, x_{n}\right) \propto \lambda^{T} e^{-n \lambda}\left(\frac{m \lambda}{2}\right)^{k / 2-1} e^{-\frac{m \lambda}{2}} \\
f\left(\lambda \mid x_{1}, \ldots, x_{n}\right) \propto\left(\frac{(2 n+m) \lambda}{2}\right)^{(k+2 T) / 2-1} e^{-\frac{(2 n+m) \lambda}{2}} \\
(2 n+m) \lambda \mid x_{1}, \ldots, x_{n} \sim \chi_{k+2 T}^{2}
\end{gathered}
$$

Now consider n independent Gaussian random variables with a variance σ^{2} that is unknown (mean μ is known).

$$
X_{i} \mid \sigma^{2} \sim N\left(\mu, \sigma^{2}\right)
$$

What would be an appropriate prior for σ^{2} (a conjugate one)? Note that

$$
f\left(\sigma^{2} \mid x_{1}, \ldots, x_{n}\right) \propto \frac{1}{\sigma^{n}} e^{-\frac{\sum_{i}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}} f\left(\sigma^{2}\right)
$$

Let $S=\sum_{i}\left(x_{i}-\mu\right)^{2}$, then:

$$
f\left(\sigma^{2} \mid x_{1}, \ldots, x_{n}\right) \propto\left(1 / \sigma^{2}\right)^{n / 2} e^{-\frac{S / \sigma^{2}}{2}} f\left(\sigma^{2}\right)
$$

Therefore,

$$
f\left(\sigma^{2} \mid x_{1}, \ldots, x_{n}\right)\left|\frac{d \sigma^{2}}{d\left(1 / \sigma^{2}\right)}\right| \propto\left(1 / \sigma^{2}\right)^{n / 2} e^{-\frac{S / \sigma^{2}}{2}} f\left(\sigma^{2}\right)\left|\frac{d \sigma^{2}}{d\left(1 / \sigma^{2}\right)}\right|
$$

The term $\left|d \sigma^{2} / d\left(1 / \sigma^{2}\right)\right|$ adjusts for changing the variable from σ^{2} to $1 / \sigma^{2}$ so that integration of the density is with respect to $1 / \sigma^{2}$ rather than σ^{2}. We get:

$$
f\left(1 / \sigma^{2} \mid x_{1}, \ldots, x_{n}\right) \propto\left(1 / \sigma^{2}\right)^{n / 2} e^{-\frac{S / \sigma^{2}}{2}} f\left(1 / \sigma^{2}\right)
$$

If $S_{0} / \sigma^{2} \sim \chi_{k}^{2}$ for some S_{0}, then:

$$
f\left(1 / \sigma^{2}\right) \propto\left(1 / \sigma^{2}\right)^{k / 2-1} e^{-\frac{S_{0} / \sigma^{2}}{2}}
$$

Therefore,

$$
\begin{gathered}
f\left(1 / \sigma^{2} \mid x_{1}, \ldots, x_{n}\right) \propto\left(1 / \sigma^{2}\right)^{\frac{n+k}{2}-1} e^{-\frac{\left(S+S_{0}\right) / \sigma^{2}}{2}} \\
\left(S+S_{0}\right) / \sigma^{2} \mid x_{1}, \ldots, x_{n} \sim \chi_{n+k}^{2}
\end{gathered}
$$

Example: Consider the following sample $(n=20)$:

9	18	21	26	14
18	22	27	15	19
22	29	15	19	24
30	16	20	24	32

We can compute $\bar{x} \approx 21$, and let us, for simplicity, assume that this is the real value of μ. In this case, $S=664$. Now one may argue that knowledge of k and S_{0} is not available. In this case, let $k=0$ and $S_{0}=0$ to get the following (improper) prior:

$$
f\left(1 / \sigma^{2}\right) \propto\left(1 / \sigma^{2}\right)^{-1}
$$

Therefore, the posterior will be given by

$$
644 / \sigma^{2} \sim \chi_{20}^{2}
$$

and from the tables we see that σ^{2} is between 20 and 75 with probability 0.95 .

$$
\left.\left.f\left(\log \sigma^{2}\right) \propto\left(1 / \sigma^{2}\right)^{-1} / \left\lvert\, \frac{d\left(\log \sigma^{2}\right)}{d\left(1 / \sigma^{2}\right)}\right.\right)\left|=\left(1 / \sigma^{2}\right)^{-1} /\right|-\frac{d\left(\log \left(1 / \sigma^{2}\right)\right)}{d\left(1 / \sigma^{2}\right)}\right) \mid \propto 1
$$

which is uniform in $\log \sigma^{2} \in(-\infty,+\infty)$.
This prompts the following question: is the improper uniform prior equivalent to some conjugate form? In other words, is there a function $g(\theta)$ such that $f(\theta \mid x)$ has a valid density when $f(g(\theta)) \propto 1$? This is equivalent to the following statement (why?):

$$
f(\theta \mid x) \propto f(x \mid \theta)\left|\frac{d g(\theta)}{d \theta}\right|
$$

The answer to this of course depends on $f(x \mid \theta)$. For our example, it is clear that we need

$$
\left|\frac{d g\left(1 / \sigma^{2}\right)}{d\left(1 / \sigma^{2}\right)}\right|=\left(1 / \sigma^{2}\right)^{-1}
$$

which is satisfied if $g\left(1 / \sigma^{2}\right)=\log \sigma^{2}$. If we recall the example of deciding on the mean μ of independent Gaussian samples, $g(\mu)=\mu$ is appropriate.

Example: Let $f(x \mid \lambda)=\lambda e^{-\lambda x}$ (exponential density). Then

$$
f(\lambda \mid x) \propto \lambda e^{-\lambda x}\left|\frac{d g(\lambda)}{d \lambda}\right|
$$

Obviously, $g(\lambda)=\log \lambda$ provides a valid posterior density (exponential). Therefore, the improper uniform prior $f(\log \lambda) \propto 1$ works.

