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1 A story about brewing

If we have no a priori knowledge of the variance σ2 (and mean µ), then

s2 =
S

n− 1
=
∑n
i=1(xi − x̄)2

n− 1

has an expected value equal to σ2. s2, so calculated, is a perfectly good estimate
of σ2, but it is seldom or never equal to σ2. If x1, . . . , xn are independent and
identically normally distributed, William Gosset, while working at Guinness
brewery, was the first to point out that if we substitute s2 for σ2, we have no
right to believe that

t =
x̄− µ
s/
√
n

will still be normally distributed (recall that (x̄ − µ)
√
n/σ ∼ N(0, 1)). Gos-

set investigated the distribution of t, and published preliminary results under
the pseudonym “Student”, to avoid official disclosure of Guinness confidential
information. He came up with the t-distribution, but the math was incom-
plete. Later, Fisher perfected the work of “Student” which lead to our current
knowledge of t-tests.

2 The t-distribution

Let Z ∼ N(0, 1) and V ∼ χ2
k be two independent random variables, and consider

the following random variable:

t =
Z√
V/k

The density of t can then be shown to be the following, with parameter k
(degrees of freedom):

f(t) =
Γ(k+1

2 )
√
kπΓ(k2 )

(1 +
t2

k
)−

k+1
2

This is the form that was obtained by Gosset in his fundamental paper.
However, the math was incomplete. Fisher proved later that:



• S/σ2 = (n− 1)s2/σ2 ∼ χ2
n−1

• x̄ and s2 are independent (this is a nice property of the estimated normal
mean and variance)

Thus,

t =
x̄−µ
σ/
√
n√

(n−1)s2/σ2

n−1

=
x̄− µ
s/
√
n

produces the desired random variable.

We are going to prove the two facts listed above for the case of n = 2:

x̄ =
x1 + x2

2

s2 =
(x1 − x̄)2 + (x2 − x̄)2

1
=

(x1 − x2)2

2
The last equality is given by replacing x̄ with (x1 + x2)/2. Therefore,

(n− 1)s2

σ2
=

(x1 − x2)2

2σ2
=
(x1 − x2√

2σ

)2

Note that x1 − x2 has a zero mean and a variance of 2σ2. Therefore, the
expression above corresponds to the square of a standard normal variable, which
is χ2

1 distributed.

Now we show the independence of x̄ and s2 (again for the case of n = 2).
It will be enough to show that x1 + x2 and (x1 − x2)2 are independent (see the
expressions for x̄ and s2 respectively). We will achieve this result by showing
that the joint density is equal to the product of the individual densities. First
observe that f(x1, x2) = f(x1)f(x2) because x1 and x2 are independent. Now
define y1 = x1 + x2 and y2 = (x1 − x2)2. We need to find f(y1, y2).

To do so, we may refer to the following generalization of the single variable
case (there must be a one-to-one correspondence between [y1, . . . , yn] and the
[x1, . . . , xn]; otherwise, we add up the contribution of the different solutions):

f(y1, . . . , yn) = f(x1, . . . , xn) ·
∣∣J∣∣−1

where J is the determinant of the following matrix:
∂y1
∂x1

. . . ∂y1
∂xn

. . .
∂yn
∂x1

. . . ∂yn∂xn


In our case, we have




∂(x1+x2)
∂x1

∂(x1+x2)
∂x2

∂(x1−x2)2

∂x1

∂(x1−x2)2

∂x2

 =
[

1 1
2(x1 − x2) −2(x1 − x2)

]
The determinant of the above matrix is J = −4(x1 − x2); therefore, |J | =

4|x1 − x2| = 4
√
y2.

f(y1, y2) =
∑

(x1,x2) solutions

f(x1, x2)|J |−1

=
∑

(x1,x2) solutions

1√
2πσ

e−
(x1−µ)2

2σ2
1√
2πσ

e−
(x2−µ)2

2σ2
1

4
√
y2

Now to express x1 and x2 in terms of y1 and y2, we have two solutions:
x1 = (y1 +

√
y2)/2, x2 = (y1−

√
y2)/2 and x1 = (y1−

√
y2)/2, x2 = (y1 +

√
y2)/2.

The two solutions are symmetric in x1 and x2, so adding their contribution is
equivalent to a multiplcation by 2.

f(y1, y2) =
1√
2πσ

e−
[(y1+√y2)/2−µ]2

2σ2
1√
2πσ

e−
[(y1−

√
y2)/2−µ]2

2σ2
2

4
√
y2

After some manipulation, we get:

f(y1, y2) =
1√

2π(
√

2σ)
e
− (y1−2µ)2

2(
√

2σ)2
1/(2σ2)

2
√
π

( y2

4σ2

)1−1/2
e−

y2
4σ2 = f(y1)f(y2)

As an additional excercise, let us now derive the form of the density for t =
Z/
√
V/k (Z and V are independent, N(0, 1) and χ2

k distributed respectively).
First, we find the density f(z, v) by multiplying f(z) and f(v).

f(z, v) ∝ e− z
2
2 v

k
2−1e−

v
2

Then, consider the two variables t = z(k/v)1/2 and r = v.

J =

 ∂t
∂z

∂t
∂v

∂r
∂z

∂r
∂v

 =
[

(kv )1/2 − z
2v2 (kv )−1/2

0 1

]
So |J |−1 = ( vk )1/2. Note that z2 = t2r/k. Therefore,

f(t, r) = f(z, v)|J |−1 ∝ e− t
2r
2k r

k−1
2 e−

r
2 = r

k+1
2 −1e−

r
2 (1+t2/k)

f(t) ∝
∫ ∞

0

e−
r
2 (1+t2/k)r

k+1
2 −1dr

Making a change of variable x = r(1 + t2/k)/2, we get:

f(t) ∝
∫ ∞

0

(1 +
t2

k
)−

k+1
2 x

k+1
2 −1e−xdx

= (1 +
t2

k
)−

k+1
2

∫ ∞
0

x
k+1

2 −1e−xdx = Γ
(k + 1

2
)(

1 +
t2

k

)− k+1
2



3 The t-test

Consider the problem of deciding on the mean of two groups (see note 6). This
time, however, the variance σ2 for each group is also unknown. Therefore, we
have to estimate σ2

x and σ2
y using s2

x and s2
y respectively. We form the following

two random variables:

(n− 1)s2
x

σ2
x

∼ χ2
n−1

(m− 1)s2
y

σ2
y

∼ χ2
m−1

where n and m represent the size of the two groups. Using the properties of the
χ2 distribution, we know that:

(n− 1)s2
x

σ2
x

+
(m− 1)s2

y

σ2
y

∼ χ2
n+m−2

We also know that:

x̄− ȳ − (µx − µy)√
σ2
x/n+ σ2

y/m
∼ N(0, 1)

Therefore, if we further assume that σ2
x = σ2

y, we can form a Student dis-
tributed random variable t with n+m− 2 degrees of freedom, as follows:

t =
x̄− ȳ − (µx − µy)√

(1/n+ 1/m) (n−1)s2x+(m−1)s2y
n+m−2

Testing whether µx = µy would then reduce to checking how extreme t is
when µx − µy = 0, thus:

t =
x̄− ȳ√

(1/n+ 1/m) (n−1)s2x+(m−1)s2y
n+m−2

Example: Consider the following data for the two groups:

group 1 group 2

25 17 29 29 26 24 27 33 21 26 28 31 14 27 29 23
23 14 21 26 20 27 26 32 18 25 32 23 16 21 17 20
20 32 17 23 20 30 26 12 26 23 7 18 29 32 24 19



We compute the following:

n = m = 24

x̄ = 24.13

ȳ = 22.88

s2
x = 31.81

s2
y = 37.70

t =
x̄− ȳ√

(1/n+ 1/m) (n−1)s2x+(m−1)s2y
n+m−2

=
1.25
1.698

= 0.736

What is an extreme value for t? We can consult the tables. The degree
of freedom is k = n + m − 2 = 46. However, in the table we find values
corresponding to k = 40 and k = 50. Let’s choose the one that gives a higher
value for the extreme (giving the hypothesis a better chance), and that is k = 40,
and we see that P (t ≥ 1.684) ≤ 0.05. Since 0.736 < 1.684, it is not considered
extreme, and we may adopt the hypothesis that µx = µy. In fact, k = 50 would
lead to the same decision.

What if σ2
x and σ2

y are not assumed to be equal? Then the t-test is not
valid, and we must revert to approximations. This will be left for the reader to
investigate if interested.

4 Student as a conjugate prior

We will show in this section that the Student density is a conjugate prior for the
case when the mean and the variance of a sample are both unknown. Therefore,
let x1, . . . , xn be n independent normally distributed observations,

Xi|µ, σ2 ∼ N(µ, σ2)

and consider the priors:

S0/σ
2 ∼ χ2

k0

µ|σ2 ∼ N(β, σ2/n0)

for some S0, k0, and n0.

First we show that such prior is actually Student distributed. For this,
consider f(µ, σ2) = f(µ|σ2)f(σ2) (note that we need to multiply f(S0/σ

2) by
|d(S0/σ

2)/dσ2| to get f(σ2).

f(µ, σ2) ∝ 1
σ
e
− (µ−β)2

2σ2/n0 · (σ2)−k0/2−1e−
S0
2σ2 = (σ2)−(k0+1)/2−1e−

S0+n0(µ−β)2

2σ2



Then,

f(µ) =
∫ ∞

0

f(µ, σ2)dσ2

∝
∫ ∞

0

(σ2)−(k0+1)/2−1e−
S0+n0(µ−β)2

2σ2 dσ2

Let’s make the change of variable t = S0+n0(µ−β)2

2σ2 , then the integral reduces
to:

∫ ∞
0

t(k0+1)/2−1e−tdt/[S0+n0(µ−β)2](k0+1)/2 = Γ
(k0 + 1

2

)
[S0+n0(µ−β)2]−(k0+1)/2

Therefore,

f(
µ− β√
S0/n0k0

) ∝ [S0 + n0(µ− β)2]−(k0+1)/2 ∝
[
1 +

(
µ−β√
S0/n0k0

)2

k0

]−(k0+1)/2

which means that the random variable between parenthesis is Student dis-
tributed with k0 degrees of freedom.

Let us now derive the posterior.

f(µ, σ2|x1, . . . , xn) = f(x1, . . . , xn|µ, σ2)f(µ, σ2)

∝ (σ2)−n/2e−
S+n(x̄−µ)2

2σ2 (σ2)−(k0+1)/2−1e−
S0+n0(µ−β)2

2σ2

= (σ2)−(n+k0+1)/2−1e−
S+S0+n(µ−x̄)2+n0(µ−β)2

2σ2

where S =
∑
i(xi − x̄)2. This gives S′/σ2 ∼ χ2

n+k0
(integrate with respect to

µ), where S′ is defined below. By using a change of variable similar to above,
we also obtain:

f(
µ− β′

s′/
√
n′
|x1, . . . , xn) ∝

[
1 +

(
µ−β′

s′/
√
n′

)2

k

]−(k+1)/2

where

k = n+ k0

n′ = n+ n0

β′ = (n0β + nx̄)/n′

S′ = S0 + S + n0β
2 + nx̄2 − n′β′2

s′2 = S′/k



Note that when S0 = 0, n0 = 0, and k0 = −1, we have

n′ = n

β′ = x̄

s′ = s

k = n− 1

and, therefore, we retrieve the classical results:

S/σ2 ∼ χ2
n−1

µ− x̄
s/
√
n
∼ tn−1

which shows again that the sampling approach is a special case of a more general
Bayesian approach. The prior (improper as usual) in this case will be:

f(µ, σ2) =
1
σ2

Example: In the spirit of Gosset’s work, assume that growing wheat has a
yield per plot that is believed to be normally distributed. Assume also that the
prior distribution of the variance has a mean of 300 and a variance of 25600. As
for the mean, it is expected to be around 110 and this information is thought
to be worth about 15 observations.

Let’s see how we can use this information to set up the prior. Based on our
prior for σ2, we can compute the following:

E[σ2] =
S0

k0 − 2
= 300

V ar(σ2) =
2S0

(k0 − 2)2(k0 − 4)
= 25600

This means that k0 = 11 and S0 = 2700. The other information gives
β = 110 and n0 = 15. Now if we actually observe the following:

141, 102, 73, 171, 137, 91, 81, 157, 146, 69, 121, 134

then n = 12, x̄ = 119, and S = 13045. Using this, the parameters for the
posterior will be:

k = k0 + n = 23

n′ = n0 + n = 27

β′ = (n0β + nx̄)/n′ = 114

S′ = S0 + S + n0β
2 + nx̄2 − n′β′2 = 16285

s′ =
√
S′/k = 26.61



Then
µ− 114

5.1
is Student distributed with 23 degrees of freedom. Using tables for the Student
distribution with k = 23, we find that µ ∈ [103, 125] with 95% probability.

Example: Let us revisit the question on the means of two groups. Let x̄− ȳ = d
and µx − µy = w. Assume

d|w, σ2 ∼ N(w, σ2(1/n+ 1/m))

µx|σ2 ∼ µy|σ2 ∼ N(β, σ2/n0)⇒ w|σ2 ∼ N(0, 2σ2/n0)

S0/σ
2 ∼ χ2

k0

We would like to obtain a posterior density for w|d. We can rewrite the
above by making a change of variable. Let τ2 = σ2(1/n+ 1/m). Then:

d|w, τ2 ∼ N(w, τ2)

w|τ2 ∼ N(0,
τ2

n+m
nm n0/2

)

S0
n+m
nm

τ2
∼ χ2

k0

So we can use the following general form (and then replace n0 and S0 and β
accordingly):

d|w, τ2 ∼ N(w, τ2)

w|τ2 ∼ N(β,
τ2

n0
)

S0

τ2
∼ χ2

k0

which is equivalent to the previous problem with n = 1 (d̄ = d, S = 0). By
letting n0 = 0, S0 = 1, β = 0, and then replacing S0 with (n + m)/(nm), we
get that

w − d√
1

1+k0

√
1/n+ 1/m

=
w − d

v
√

1/n+ 1/m

is Student distributed with 1+k0 degrees of freedom. The interpretation is that
when k0 is large (student density approximates standard normal), w behaves
like a normal variable with mean d and some variance v2(1/n+ 1/m) where v2

is small.


