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1 The beta density as a conjugate form

Suppose that k is a binomial random variable with index n and parameter p,
i.e.

P (k|p) =
(

n
k

)
pk(1− p)n−k

Applying Bayes’s rule, we have:

f(p|k) ∝ pk(1− p)n−kf(p)

Therefore, a prior of the form

f(p) ∝ pα−1(1− p)β−1

is a conjugate prior since the posterior will have the form:

f(p|k) ∝ pk+α−1(1− p)n−k+β−1

It is not hard to show that
∫ 1

0

pα−1(1− p)β−1dp =
Γ(α)Γ(β)
Γ(α + β)

Let’s denote the above by B(α, β). Therefore,

f(p) = Be(α, β)

where Be(α, β) is called the beta density with parameters α > 0 and β > 0,
and is given by:

1
B(α, β)

pα−1(1− p)β−1

Note that the beta density can also be viewed as the posterior for p after
observing α − 1 successes and β − 1 failures, given a uniform prior on p (here
both α and β are integers).

f(p|α, β) ∝ pα−1(1− p)β−1



Example: Consider an urn containing red and black balls. The probability
of a red ball is p, but p is unknown. The prior on p is uniform between 0 and 1
(no specific knowledge). We repeatedly draw balls with replacement. What is
the posterior density for p after observing α− 1 red balls and β− 1 black balls?

f(p|α− 1 red, β − 1 black) ∝
(

α + β − 2
α− 1

)
pα−1(1− p)β−1

Therefore, f(p) = Be(α, β). Note that both α and β need to be equal to
at least 1. For instance, after drawing one red ball only (α = 2, β = 1), the
posterior will be f(p) = 2p. Here’s a table listing some possible observations:

observation posterior
α = 1, β = 1 f(p) = 1

α = 2, β = 1 f(p) = 2p

α = 2, β = 2 f(p) = 6p(1− p)

α = 3, β = 1 f(p) = 3p2

α = 3, β = 2 f(p) = 12p2(1− p)

α = 3, β = 3 f(p) = 30p2(1− p)2

2 Laplace’s rule of succession

In 1774, Laplace claimed that an event which has occurred n times, and has
not failed thus far, will occur again with probability (n + 1)/(n + 2). This is
known as Laplace’s rule of succession. Laplace applied this result to the sunrise
problem: What is the probability that the sun will rise tomorrow?

Let X1, X2, . . . be a sequence of independent Bernoulli trials with parameter
p. Note that this notion of dependence is conditional on p. More precisely:

P (X1 = b1, X2 = b2, . . . , Xn = bn|p) =
n∏

i=1

P (Xi = bi)

In fact, Xi and Xj are not independent because by observing Xi, one could
say something about p, and hence about Xj . This is a consequence of the
Bayesian approach which treats p itself as a random variable (unknown). Let
Sn =

∑n
i=1 Xi. We would like to find the following probability:

P (Xn+1 = 1|Sn = k)



Observe that:
P (Xn+1 = 1|Sn = k)

=
∫ 1

0

P (Xn+1 = 1|p, Sn = k)f(p|Sn = k)dp

=
∫ 1

0

P (Xn+1 = 1|p)f(p|Sn = k)dp =
∫ 1

0

pf(p|Sn = k)dp

Therefore, we need to find the posterior density of p. Assuming we know
nothing about p initially, we will adopt the uniform prior f(p) = 1 between 0
and 1. Applying Bayes’ rule:

f(p|Sn = k) ∝ P (Sn = k|p)f(p) ∝ pk(1− p)n−k

We conclude that:

f(p|Sn = k) =
1

B(k + 1, n− k + 1)
p(k+1)−1(1− p)(n−k+1)−1

Finally,

P (Xn+1 = 1|Sn = k) =
∫ 1

0

pf(p|Sn = k)dp =
k + 1
n + 2

We obtain Laplace’s result by setting k = n.

3 Generalization

Consider a coin toss that can result in head, tail, or edge. We denote by p
the probability of head, and by q the probability of tail, thus the probability of
edge is 1− p− q. Observe that p, q ∈ [0, 1] and p + q ≤ 1. In n coin tosses, the
probability of observing k1 heads and k2 tails (and thus n−k1−k2 edges) is given
by the multinomial probability mass function (this generalizes the binomial):

P (k1, k2) =
(

n
k1

)(
n− k1

k2

)
pk1qk2(1− p− q)n−k1−k2

The Dirichlet density is a generalization of beta and is conjugate to multi-
nomial. For instance:

f(p, q) =
Γ(α + β + γ)
Γ(α)Γ(β)Γ(γ)

pα−1qβ−1(1− p− q)γ−1



4 Pólya’s urn

Pólya’s urn represents a generalization of a Binomial random variable. Consider
the following scheme: An urn contains b black and r red balls. The ball drawn
is always replaced, and, in addition, c balls of the color drawn are added to the
urn. When c = 0, drawings are equivalent to independent Bernoulli processes
with p = b

b+r . However, with c 6= 0, the Bernoulli processes are dependent, each
with a parameter that depends on the sequence of previous drawings.
For instance, if the first ball is black, the (conditional) probability of a black
ball at the second drawing is (b+ c)/(b+ c+ r). The probability of the sequence
black, black is, therefore,

b

b + r

b + c

b + c + r

Let Xn be a random variable denoting the number of black balls drawn in n
trials. What is P (Xn = k)? It is easy to show that all sequences with k black
balls have the same probability pn and, therefore,

P (Xn = k) =
(

n
k

)
pn

We now compute pn as:

∏k
i=1[b + (i− 1)c]

∏n−k
i=1 [r + (i− 1)c]∏n

i=1[b + r + (i− 1)c]

Rewriting in terms of the Gamma function (assuming c > 0), we have:

∏k
i=1[

b
c + i− 1]

∏n−k
i=1 [ r

c + i− 1]∏n
i=1[

b+r
c + i− 1]

=

Γ( b
c +k)Γ( r

c +n−k)

Γ( b
c )Γ( r

c )

Γ( b+r
c +n)

Γ( b+r
c )

=
Γ( b

c + k)Γ( r
c + n− k)

Γ( b
c + r

c + n)
Γ( b

c + r
c )

Γ( b
c )Γ( r

c )
=

B( b
c + k, r

c + n− k)
B( b

c , r
c )

Therefore, the important parameters are b/c and r/c. Note that we can rewrite
the above as (verify it):

pn =
∫ 1

0

pk(1− p)n−kBe
(b

c
,
r

c

)
dp

So,

P (Xn = k) =
(

n
k

) ∫ 1

0

pk(1− p)n−kBe
(b

c
,
r

c

)
dp



5 Pólya’s urn generates beta

We now show that Pólya’s urn generates a beta distribution at the limit. For
this, we will consider. limn→∞Xn/n.

First note that we can write P (Xn = k) as follows:

P (Xn = k) =
Γ( b

c + r
c )

Γ( b
c )Γ( r

c )
Γ(k + b

c )
Γ(k + 1)

Γ(n− k + r
c )

Γ(n− k + 1)
Γ(n + 1)

Γ(n + b
c + r

c )

Using Stirling’s approximation Γ(x + 1) ≈ √
2πx

(
x
e

)x as x goes to infinity,
we can conclude that when x goes to infinity,

Γ(x + a)
Γ(x + b)

≈ xa−b

Therefore, when k →∞ (but k ≤ xn for some 0 < x < 1),

P (Xn = k) =
1

B( b
c , r

c )
k

b
c−1(n− k)

r
c−1n1− b

c− r
c

Now,

P (
Xn

n
≤ x) = P (

Xn

n
= 0) + P (

Xn

n
=

1
n

) + . . . + P (
Xn

n
=
bnxc

n
)

As n goes to infinity, 1/n goes to zero; therefore:

∫ x

0

P (
Xn

n
= u)du = lim

n→∞
1
n

[P (
Xn

n
= 0) + P (

Xn

n
=

1
n

) + . . . + P (
Xn

n
=
bnxc

n
)]

P (
Xn

n
≤ x) = n

∫ x

0

P (
Xn

n
= u)du = n

∫ x

0

P (Xn = nu)du

And since nu → ∞, we can replace k by nu in the limiting expression we
obtained for P (Xn = k) to get:

P (
Xn

n
≤ x) =

∫ x

0

1
B( b

c , r
c )

u
b
c−1(1− u)

r
c−1du

It is rather interesting that this limiting property of Pólya’s urn depends on
the initial condition. Even more interesting is that if Y = limn→∞Xn/n, then
conditioned on Y = p we have independent Bernoulli trials with parameter p
(stated without proof).

P (Xn = k|Y = p) =
(

n
k

)
pk(1− p)n−k


