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1 The beta density as a conjugate form

Suppose that k is a binomial random variable with index n and parameter p,
ie.

P(klp) = < . )p’“(l —p)F

Applying Bayes’s rule, we have:

fplk) o< p*(1 = p)"* f(p)

Therefore, a prior of the form

flp) xp*H(1—p)°~t

is a conjugate prior since the posterior will have the form:

Fplk) oc pFFeTt(1 — p)n At
It is not hard to show that
! L(a)I(B)
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Let’s denote the above by B(«, 3). Therefore,

f(p) = Be(a, B)

where Be(a, ) is called the beta density with parameters o > 0 and 3 > 0,
and is given by:

1 a—1 B—1
=P (1-p)
B(a, B)
Note that the beta density can also be viewed as the posterior for p after
observing o — 1 successes and § — 1 failures, given a uniform prior on p (here
both o and 3 are integers).

fpla, B) o p* (1 —p)P~!



Example: Consider an urn containing red and black balls. The probability
of a red ball is p, but p is unknown. The prior on p is uniform between 0 and 1
(no specific knowledge). We repeatedly draw balls with replacement. What is
the posterior density for p after observing a — 1 red balls and 3 — 1 black balls?

f(pla— 1 red, B — 1 black) o ( az612 )po‘l(l —p)Pt

Therefore, f(p) = Be(a,3). Note that both « and § need to be equal to
at least 1. For instance, after drawing one red ball only (a = 2, § = 1), the
posterior will be f(p) = 2p. Here’s a table listing some possible observations:

observation ‘posterior
a=18=1] f(p)=1

a=26=1|/()=2p

a=208=2| f(p)=6p(l—p)
a=3,06=1] f(p)=3p>
a=3,8=2| f(p)=12p*(1 - p)

a=3,6=3] f(p)=30p*(1-p)°

2 Laplace’s rule of succession

In 1774, Laplace claimed that an event which has occurred n times, and has
not failed thus far, will occur again with probability (n + 1)/(n + 2). This is
known as Laplace’s rule of succession. Laplace applied this result to the sunrise
problem: What is the probability that the sun will rise tomorrow?

Let X1, X, ... be a sequence of independent Bernoulli trials with parameter
p. Note that this notion of dependence is conditional on p. More precisely:

P(X1 :bl,XQ Zbg,...,Xn =b7l|p) = HP(XZ Zbl)
1=1

In fact, X; and X; are not independent because by observing X;, one could
say something about p, and hence about X;. This is a consequence of the
Bayesian approach which treats p itself as a random variable (unknown). Let
Sp =i, X;. We would like to find the following probability:

P(Xpi1 =1]S, = k)



Observe that:
P(Xpi1 = 1|8, = k)
1
= [ P(uss = 1Up. S, = DS 01S) =
0

1

1
- / P(Xni1 = 1Up) f(plSn = k)dp = / pf(plSn = K)dp
0 0

Therefore, we need to find the posterior density of p. Assuming we know
nothing about p initially, we will adopt the uniform prior f(p) = 1 between 0
and 1. Applying Bayes’ rule:

f(plSn = k) < P(S, = k|p)f(p) < p*(1 —p)"*

We conclude that:

1 - —_ —
f|Sn =k) = Bkt 1 n—k+1)p(k+1) 1(1_p)(n kE+1)—1
Finally,
1
k+1
(Xng1 = 1[Sn )Apf(p\L )dp —

We obtain Laplace’s result by setting k = n.

3 Generalization

Consider a coin toss that can result in head, tail, or edge. We denote by p
the probability of head, and by ¢ the probability of tail, thus the probability of
edge is 1 — p — ¢q. Observe that p,q € [0,1] and p+ ¢ < 1. In n coin tosses, the
probability of observing k; heads and ks tails (and thus n—k; — ko edges) is given
by the multinomial probability mass function (this generalizes the binomial):

—k ki —
Pk, ko) = ( 1?1 ) ( nkQ ' )p’“q’”(l—p—q) Fks

The Dirichlet density is a generalization of beta and is conjugate to multi-
nomial. For instance:

Dla+3+7)

Moo ¢ Trm0

f(p,q) =



4 Polya’s urn

Pélya’s urn represents a generalization of a Binomial random variable. Consider
the following scheme: An urn contains b black and 7 red balls. The ball drawn
is always replaced, and, in addition, ¢ balls of the color drawn are added to the
urn. When ¢ = 0, drawings are equivalent to independent Bernoulli processes
with p = b%. However, with ¢ # 0, the Bernoulli processes are dependent, each
with a parameter that depends on the sequence of previous drawings.

For instance, if the first ball is black, the (conditional) probability of a black
ball at the second drawing is (b+c¢)/(b+c+7). The probability of the sequence

black, black is, therefore,

b b+c
b+rb+c+r

Let X,, be a random variable denoting the number of black balls drawn in n
trials. What is P(X,, = k)? It is easy to show that all sequences with & black
balls have the same probability p,, and, therefore,

P(X, = k) = ( " )pn
k
We now compute p,, as:

T[T, [b+ (i = DATIZ I+ (= 1)d]
[T [o+7r+(i—1)]

Rewriting in terms of the Gamma function (assuming ¢ > 0), we have:

[T [+ — T2 +i - 1]
[T [ 40— 1]

(&

(24K (Z+n—k)

L(T(%)
- F(HTT+7L)
r(r)
TE+RT(E+n—k)T(E+2)  BE+kZ+n—k)
PE+t+n)  T(OLE) B(2,7)

Therefore, the important parameters are b/c and r/c. Note that we can rewrite
the above as (verify it):

Pn = /Olp’“(l *p)"”“Be(a f)dp
So,



5 Podlya’s urn generates beta

We now show that Pdlya’s urn generates a beta distribution at the limit. For
this, we will consider. lim,, oo X, /n.
First note that we can write P(X,, = k) as follows:

o P+ TR+Y)T(n—k+L) T(n+1)
P = k) = [y r () Tt ) Tk ) Tin+ £+ 2)

Using Stirling’s approximation T'(z + 1) &~ v27rz (%) as = goes to infinity,
we can conclude that when z goes to infinity,

F(I + a) a—b
— L~
I'(z+0b)

Therefore, when k — oo (but k < xn for some 0 < z < 1),

1 . i
P(X, = k)= ——k'(n—k)i'nl ek
B2 ¢)
Now,
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As n goes to infinity, 1/n goes to zero; therefore:

| P = wdu= i PR =04 PR = D Pz =

-n
n—oo N n n n

Xn r X, *
P(— <ax)= n/ P(— =u)du = n/ P(X,, = nu)du
n 0 n 0

And since nu — oo, we can replace k by nu in the limiting expression we
obtained for P(X,, = k) to get:

x
P(& <) :/ 7: - ugfl(l —u)%*ldu
n 0 B(E’ TE)

It is rather interesting that this limiting property of Pdlya’s urn depends on
the initial condition. Even more interesting is that if ¥ = lim,,_,o, X,,/n, then
conditioned on Y = p we have independent Bernoulli trials with parameter p
(stated without proof).

P(Xn =kY =p) = ( L )p’“(l—p)”"c



