Problem 1: Exhaustive Coin Change

Given coins $c_1 > c_2 > \ldots > c_d = 1$, assume we have an array a, where $a[i]$ denotes the number of coins of type c_i. Therefore, $\sum_{i=1}^d a[i]$ is the total number of coins, and $\sum_{i=1}^d a[i]c_i$ is the value.

Given a desired value M, an exhaustive strategy is to consider all possible values of a, where $a[i]$ varies between 0 and M/c_i, as seen in class. For instance, when $M = 30$ and $c_1 = 25$, $c_2 = 15$, and $c_3 = 1$, the possible values of a can be viewed as leaves in a tree.

The preorder traversal of the tree gives internal nodes and leaves of the form $(a[0], a[1], a[2])$:

$(-,-,-), (0,-,-), (0,0,-), (0,0,0), \ldots, (0,0,30), (0,1,-), (0,1,0), \ldots, (0,1,30), (0,2,-), (0,2,0), \ldots, (0,2,30), (1,-,-), \ldots, (1,2,30), (-,-,-)$

Assume $a[0]$ is the level, i.e. this is also the number of values not equal to $'-'$ in a. Therefore, if $a[0] = l$, $a[l+1], \ldots, a[d]$ can be ignored.

(a) Given a, write two function $\text{value}(a,c)$ that computes $\sum_{i=1}^d a[i]c_i$, and $\text{count}(a)$ that computes $\sum_{i=1}^d a[i].$
(b) Given \(a \), write a function \(\text{next}(a, c, d, M) \), that changes \(a \) to the next node in the preorder traversal of the tree. Do not explicitly build the tree structure, just manipulate the values in \(a \).

(c) Given \(a \), write a function \(\text{skip}(a, c, d, M) \) that changes \(a \) to a node in a lower level that comes next in the preorder traversal of the tree. If this node does not exist, it’s \((-,-,\ldots,-)\).

(d) Implement the exhaustive search by going through all possible values of \(a \), i.e. starting at \((1,0,\ldots,0)\) and using \(\text{next}(a, c, d, M) \); however, if \(\text{value}(a, c) > M \) or \(\text{count}(a) \) is bad, use \(\text{skip}(a, c, d, M) \) instead to bypass some invalid possibilities. Use a large number of \(M \) and keep track of how many nodes you check. Compare this approach to the basic exhaustive method.

\[
a \leftarrow (1,0,\ldots,0)\\
\text{best} \leftarrow M\\
\text{checked} \leftarrow 0\\
\text{while } a[0] > 0 \text{ (not at root)}\\
\quad \text{checked} \leftarrow \text{checked} + 1\\
\quad \text{if } \text{value}(a, c) > M \text{ or } \text{count}(a) > \text{best}\\
\quad \quad \text{then } \text{skip}(a, c, d, M)\\
\quad \quad \quad \text{continue}\\
\quad \text{if } a[0] = d \text{ (a leaf)}\\
\quad \quad \text{then if } \text{value}(a, c) = M \text{ and } \text{count}(a) < \text{best}\\
\quad \quad \quad \text{then } \text{best} \leftarrow \text{count}(a, c)\\
\quad \quad \quad \text{best}_a \leftarrow a\\
\quad \text{next}(a, c, d, M)\\
\text{return best}_a
\]

Problem 2: Fibonacci Revisited

Consider the following algorithm, as seen in class:

\[
\text{fib}(a, b, n)\\
\text{while } n > 1\\
\quad b \leftarrow a + b\\
\quad a \leftarrow b - a\\
\quad n \leftarrow n - 1\\
\text{return } b
\]

\[
\text{fib}(n)\\
\text{return } \text{fib}(1, 1, n)
\]

This algorithm requires \(O(n) \) arithmetic operations. However, since Fibonacci numbers grow fast, it is not reasonable to assume that arithmetic operations take constant time. Addition of \(b \) bit numbers take \(O(b) \) time (standard addition algorithm we do by hand). One can show that the \(n \)th Fibonacci number is \(O(\phi^n) \); therefore, all intermediate results while computing \(\text{fib}(n) \) need \(O(n) \) bits. This makes the above algorithm an \(O(n^2) \) algorithm. We can do better.
Consider the matrix:

$$F = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

It is easy to verify that $F_{2,2}^n$ is the nth Fibonacci number. This means, we only need to multiply the matrix by itself n times, each matrix multiplication involves 8 multiplications and 4 additions. The bottleneck is multiplication. Assume that we can multiply two n bit numbers is $O(n^\alpha)$ time for $1 < \alpha < 2$. Then the total running time of this algorithm will be $O(n^{1+\alpha})$, not an improvement over the $O(n^2)$ bound.

However, we can use a technique called repeated squaring. Consider the function pow (for power).

$$pow(F, i) \text{ (compute } F^i \text{)}$$

if $i > 0$

then if i is even

then return $\text{square}(pow(F, i/2))$

else return $F \times pow(F, i - 1)$

else return 1

(a) What is the number of multiplications performed by this algorithm using Big-O notation?

(b) Describe a better than $O(n^2)$ algorithm for computing the nth Fibonacci number.

Problem 3

Do problems 2.1, 2.2, and 2.15 in the book.