
Introduction to Bioinformatics Algorithms

Homework 1 Solution

Saad Mneimneh

Computer Science

Hunter College of CUNY

Problem 1: Coin Change
Write a function that takes an integer d, an array c, where c[1] > c[2] > . . . >
c[d] = 1, an integer n, and an array k, and performs the greedy coin change
problem to make n. Therefore, it should modify k such that:

c[1]k[1] + c[2]k[2] + . . . + c[d]k[d] = n

Also make your function return
∑d

i=1 k[i], which is the total number of coins
used.

Solution: Here’s a pseudocode for the greedy algorithm, as described in class.

coin greedy(n, c, k, d)
num← 0
for i← 1 to d

k[i]← n/c[i] . integer division
n← n− c[i]k[i]
num← num + k[i]

return num

If indexing starts at 0, then i should iterate from 0 to d− 1 instead.

Problem 2: Exhaustive enumeration
Write two algorithms that iterate over every index from (0, 0, . . . , 0) to (n1, n2, . . . nd).
Make one algorithm recursive and one iterative.

Solution: Here’s a pseudocode for advancing the count to the next. Repeated
use of this can iterate over all of them. For convenience, I will make the function
return a boolean to indicate whether we were able to increment a position or
not.

advance rec(a, d, n)
if d > 0 and a[d] = n[d] . this position reached the max

then a[d]← 0 . reset and recurse
return advance rec(a, d− 1, n)

else if d = 0 . all positions have been reset
then return false
else a[d]← a[d] + 1 . a[d] 6= n[d], so increment

return true



If indexing starts at 0, then a[d] should be replaced by a[d−1]. Since we have a
tail recursion in the form presented in class, it can be eliminated using the stan-
dard technique we discussed, i.e. (1) replacing the if by a while, (2) changing the
recursive call to an update of parameters, and finally (3) removing the else if any.

advance iter(a, d, n)
while d > 0 and a[d] = c[d] . this position reached the max

a[d]← 0 . reset and iterate
d← d− 1

if d = 0 . all positions have been reset
then return false
else a[d]← a[d] + 1 . a[d] 6= n[d], so increment

return true

Assuming we initialize a to (0, 0, . . . , 0), both versions can be used as follows:

enumerate rec(a, d, n)
do something with a, e.g. output a
if advance(a, d, n)

enumerate rec(a, d, n)

or

enumerate iter(a, d, n)
repeat

do something with a, e.g. output a
until advance(a, d, n)

Problem 3: Rabbits with limited life span
Modify the Fibonacci sequence by making every pair of rabbits die after giving
birth to their kth pair (assume k ≥ 1). Your program should output Fn given
n and k. Investigate the growth of the sequence by exploring several values of k.

Solution: We can keep track of the number of adult and newborn pairs in each
time step. For any given time step n, fib(n) = adultn + newbornn. We also
know that these numbers evolve as follows:

adultn ← adultn−1 + newbornn−1

newbornn ← adultn−1

This will give the original Fibonacci sequence (I am assuming fib(0) = 0 and
fib(1) = 1).

fib(n)
if n ≤ 1

then return n
adult← 0
newborn← 1
for i← 2 to n

adult← adult + newborn
newborn← adult− newborn

return adult + newborn



The modification for limited life span will have to recall at time n, the value
of newbornn−1 (these will become new adults at time n) and, therefore, subtract
that number from the total at time n + k. This can be achieved by a queue of
length k in the following way: at time n, we insert newbornn−1. An insertion
at time n, will have to drop the element inserted at time n− k, since the queue
has length k only. If the dropped element is returned, that’s the value we have
to subtract. Therefore, let us assume the existence of a function insert(a) that
inserts a into a queue, and drops and returns the value inserted k steps before,
or returns 0 if none.

fib(n)
if n ≤ 1

then return n
adult← 0
newborn← 1
for i← 2 to n

dropped← insert(newborn)
adult← adult + newborn
newborn← adult− newborn
adults← adults− dropped

return adult + newborn

This functionality can be achieved by a circular array of size k, indexed from 0
to k − 1

init
for i← 0 to k − 1

queue[i]← 0
pos← 0

insert(a)
dropped← queue[pos]
queue[pos]← a
pos← (pos + 1) mod k

Trying for several values of k reveals that for n > k+1, fib(n) =
∑n−2

i=n−1−k fib(i)
(k terms), and fib(n) remains unchanged for n ≤ k + 1 (if we assume fib(0) =
fib(1) = 1, thus shifting the sequence by 1, then the threshold k + 1 is changed
to k, code below).

fib(n)
if n = 0

then return 1
adult← 0
newborn← 1
for i← 1 to n

dropped← insert(newborn)
adult← adult + newborn
newborn← adult− newborn
adults← adults− dropped

return adult + newborn


