Problem 1: Exhaustive Coin Change

Given coins $c_1 > c_2 > \ldots > c_d = 1$, assume we have an array a, where $a[i]$ denotes the number of coins of type c_i. Therefore, $\sum_{i=1}^{d} a[i]$ is the total number of coins, and $\sum_{i=1}^{d} a[i]c_i$ is the value.

Given a desired value M, an exhaustive strategy is to consider all possible values of a, where $a[i]$ varies between 0 and M/c_i, as seen in class. For instance, when $M = 30$ and $c_1 = 25$, $c_2 = 15$, and $c_3 = 1$, the possible values of a can be viewed as leaves in a tree.

The preorder traversal of the tree gives internal nodes and leaves of the form $(a[1], a[2], a[3])$:

$(-, -, -), (0, -, -), (0, 0, -), (0, 0, 0), \ldots, (0, 0, 30), (0, 1, -), (0, 1, 0), \ldots, (0, 1, 30), (0, 2, -), (0, 2, 0), \ldots, (0, 2, 30), (1, -, -), \ldots, (1, 2, 30), (-, -, -)$

Assume $a[0]$ is the level, i.e. this is also the number of values not equal to ‘−’ in a. Therefore, if $a[0] = l$, $a[l+1], \ldots, a[d]$ can be ignored.
(a) Given \(a \), write two function \(value(a,c) \) that computes \(\sum_{i=1}^{a[0]} a[i]c[i] \), and \(count(a) \) that computes \(\sum_{i=1}^{a[0]} a[i] \).

Solution:

\[\text{value}(a,c) \]

\[
\text{sum} \leftarrow 0
\]

\[
l \leftarrow a[0]
\]

for \(i \leftarrow 1 \) to \(l \)

\[
\text{sum} \leftarrow \text{sum} + a[i]c[i]
\]

return \(\text{sum} \)

\[\text{count}(a) \]

\[
um \leftarrow 0
\]

\[
l \leftarrow a[0]
\]

for \(i \leftarrow 1 \) to \(l \)

\[
um \leftarrow \text{num} + a[i]
\]

return \(\text{num} \)

(b) Given \(a \), write a function \(\text{next}(a,c,d,M) \), that changes \(a \) to the next node in the preorder traversal of the tree. Do not explicitly build the tree structure, just manipulate the values in \(a \).

Solution:

\[\text{next}(a,c,M,d) \]

\[
l \leftarrow a[0]
\]

if \(l < d \) not a leaf, so go to first in next level

\[
\text{then } a[0] \leftarrow l + 1
\]

\[
a[l + 1] \leftarrow 0
\]

return

for \(i \leftarrow l \) downto 1 \(\triangleright \) find where we can increment

\[
\text{if } a[i] < M/c[i]
\]

\[
\text{then } a[i] \leftarrow a[i] + 1
\]

\[
a[0] \leftarrow i
\]

return \(a[0] \leftarrow 0 \triangleright \) back to root

(c) Given \(a \), write a function \(\text{skip}(a,c,d,M) \) that changes \(a \) to a node in a lower level that comes next in the preorder traversal of the tree. If this node does not exist, if’s \((-,-,\ldots,-)\).

Solution:

\[\text{skip}(a,c,M,d) \]

\[
l \leftarrow a[0] - 1 \triangleright \text{start with previous level}
\]

\[
a[0] \leftarrow l
\]

for \(i \leftarrow l \) downto 1 \(\triangleright \) find where we can increment

\[
\text{if } a[i] < M/c[i]
\]

\[
\text{then } a[i] \leftarrow a[i] + 1
\]

\[
a[0] \leftarrow i + 1
\]

return \(a[0] \leftarrow 0 \triangleright \) back to root
(d) Implement the exhaustive search by going through all possible values of a, i.e., starting at $(1, 0, \ldots, 0)$ and using $\text{next}(a, c, d, M)$; however, if $\text{value}(a, c) > M$ or $\text{count}(a)$ is bad, use $\text{skip}(a, c, d, M)$ instead to bypass some invalid possibilities.

Use a large number of M and keep track of how many nodes you check. Compare this approach to the basic exhaustive method.

$$a \leftarrow (1, 0, \ldots, 0)$$
$$\text{best} \leftarrow M$$
$$\text{checked} \leftarrow 0$$

while $a[0] > 0$ (not at root)

$$\text{checked} \leftarrow \text{checked} + 1$$

if $\text{value}(a, c) > M$ or $\text{count}(a) > \text{best}$

then $\text{skip}(a, c, d, M)$

continue

if $a[0] = d$ (a leaf)

then if $\text{value}(a, c) = M$ and $\text{count}(a) < \text{best}$

then $\text{best} \leftarrow \text{count}(a, c)$

$\text{best}_a \leftarrow a$

$\text{next}(a, c, d, M)$

return best_a

Problem 2: Fibonacci Revisited

Consider the following algorithm, as seen in class:

$$\text{fib}(a, b, n)$$

while $n > 1$

$$b \leftarrow a + b$$

$$a \leftarrow b - a$$

$$n \leftarrow n - 1$$

return b

$$\text{fib}(n)$$

return $\text{fib}(1, 1, n)$

This algorithm requires $O(n)$ arithmetic operations. However, since Fibonacci numbers grow fast, it is not reasonable to assume that arithmetic operations take constant time. Addition of b bit numbers take $O(b)$ time (standard addition algorithm we do by hand). One can show that the nth Fibonacci number is $O(\phi^n)$; therefore, all intermediate results while computing $\text{fib}(n)$ need $O(n)$ bits. This makes the above algorithm an $O(n^2)$ algorithm. We can do better.

Consider the matrix:

$$F = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

It is easy to verify that $F^n_{2,2}$ is the nth Fibonacci number. This means, we only need to multiply the matrix by itself n times, each matrix multiplication involves 8 multiplications and 4 additions. The bottleneck is multiplication. Assume that we can multiply two n bit numbers is $O(n^\alpha)$ time for $1 < \alpha < 2$.
Then the total running time of this algorithm will be $O(n^{1+\alpha})$, not an improvement over the $O(n^2)$ bound.

However, we can use a technique called repeated squaring. Consider the function pow (for power).

$$\text{pow}(F, i) \ (\text{compute } F^i)$$

if $i > 0$
 then if i is even
 then return $\text{square}(\text{pow}(F, i/2))$
 else return $F \times \text{pow}(F, i - 1)$
 else return 1

(a) What is the number of multiplications performed by this algorithm using Big-O notation?

Solution: The power is halved when its even. So we can’t have more than $O(\log n)$ such events. In addition, every time the power is odd, the next power will be even. Therefore, we at most double the number of multiplications. This is still $O(\log n)$ matrix multiplications.

(b) Describe a better than $O(n^2)$ algorithm for computing the nth Fibonacci number.

Solution: Since each matrix multiplication involves a constant number of scalar multiplications, and all numbers have $O(n)$ bits, the total running time of this algorithm is $O(n^\alpha \log n)$, which is asymptotically better than n^2 since $\alpha < 2$, and any power of n dominates any power of $\log n$.

Problem 3
Do problems 2.1, 2.2, and 2.15 in the book.

Solution to Problem 2.1:
We can start with the minimum as $min = \infty$ and the maximum as $max = -\infty$. Then, we start comparing pairs of numbers, say $a[i]$ and $a[i + 1]$. With one comparison, we can determine which of the two is smaller and which is larger. We then compare the smaller one to min and the larger one to max, and thus update our minimum and maximum. This is at most 3 comparisons per pair of numbers, for a total of at most $3n/2$ comparisons.

```
min ← ∞
max ← −∞
▷ assume for simplicity that we have an even number of elements 2n
for i ← 1 to n
  if a[2i − 1] < a[2i]
    then if a[2i − 1] < min
       then min ← a[2i − 1]
    if a[2i] > max
       then max ← a[2i]
  else ▷ do the reverse comparisons
```
Solution to Problem 2.2
I will write a function that increments the counter by 1. One is recursive and one is iterative. To increment from \((0, \ldots, 0)\) to \((n_1, \ldots, n_d)\) we can call the function \(\prod_{i=1}^d (n_i + 1) - 1\) times.

\[
\text{incRecursive}(a, n, d) \begin{array}{l}
\text{if } d > 0 \text{ and } a[d] = n[d] \\
\quad \text{then } a[d] \leftarrow 0 \\
\quad \text{incRecursive}(a, n, d - 1) \\
\text{else if } d > 0 \\
\quad a[d] = a[d] + 1
\end{array}
\]

\[
\text{incIterative}(a, n, d) \begin{array}{l}
\text{while } d > 0 \text{ and } a[d] = n[d] \\
\quad a[d] \leftarrow 0 \\
\quad d \leftarrow d - 1 \\
\text{if } d > 0 \\
\quad \text{then } a[d] = a[d] + 1
\end{array}
\]

Solution to Problem 2.15
This is very similar to the game of Nim. We can first set \(A(1, 1) = 0\) because the first player will lose on a \(1 \times 1\) grid. Then, we have the following recurrence:

\[
A(i, j) = \begin{cases}
0 & A(i - 1, j) = A(i, j - 1) = A(i - 1, j - 1) = 1 \\
1 & \text{otherwise}
\end{cases}
\]

with special care done to the first row and first column because not all neighbors exist.