
Introduction to Bioinformatics Algorithms

Homework 2

Saad Mneimneh

Computer Science

Hunter College of CUNY

Problem 1: Coin Change
(a) The greedy algorithm for coin change can be described as:

G(n) = 1 +G(n− c)
where c is the largest coin value less or equal to n.

G(n)
if n > 0

then let c be largest coin value ≤ n
return 1 +G(n− c)

else return 0

Transform this algorithm into a dynamic programming algorithm to compute
G(0), G(1), . . . , G(n). What is the running time of your algorithm?

(b) Describe a dynamic programming algorithm to solve the coin change prob-
lem in general. What is the running time of your algorithm?

(c) Do some research online for an algorithm that determines, given denomi-
nations c1 > c2 > . . . > cd = 1, whether the greedy coin change algorithm
works correctly. In particular, you may consider: http://www.cs.cornell.
edu/~kozen/papers/change.pdf. Implement the algorithm you find.

Problem 2: Fibonacci Revisited
Consider the following algorithm:

fib(a, b, n)
while n > 0

b← a+ b
a← b− a
n← n− 1

return a

fib(n)
return fib(0, 1, n)

This algorithm requires O(n) arithmetic operations. However, since Fibonacci
numbers grow fast, it is not reasonable to assume that arithmetic operations
take constant time. Addition of b bit numbers take O(b) time (standard addi-
tion algorithm we do by hand). One can show that the nth Fibonacci number

is Θ(φn); therefore, all intermediate results while computing fib(n) need O(n)
bits. This makes the above algorithm an O(n2) time algorithm. We can do
better.

Consider the matrix:

F =
[

0 1
1 1

]
It is easy to verify that Fn1,2 is the nth Fibonacci number. This means, we
only need to multiply the matrix by itself n times, each matrix multiplication
involves 8 multiplications and 4 additions. The bottleneck is multiplication.
Assume that we can multiply two n bit numbers is O(nα) time for 1 < α < 2.
Then the total running time of this algorithm will be O(n1+α), not an improve-
ment over the O(n2) bound.

However, we can use a technique called repeated squaring. Consider the function
pow (for power).

pow(F, i) (compute F i)
if i > 0

then if i is even
then return square(pow(F, i/2))
else return F × pow(F, i− 1)

else return identity matrix

(a) What is the number of multiplications performed by this algorithm using
Big-O notation?

(b) Show that loga n = o(nε) for any positive a and ε, i.e. limn→∞
loga n
nε = 0.

This is small o notation and it means that that loga n < cnε for every constant
c > 0 (not just some constant c) and large enough n.

(c) Describe a better than O(n2) algorithm for computing the nth Fibonacci
number.

Problem 3: Enumeration
In the previous homework, we considered the enumeration from (0, 0, . . . , 0) to
(n1, n2, . . . , nd). We now explore this enumeration using a tree structure.

For example, assume d = 3 and n1 = 1, n2 = 2, and n3 = 30. Here’s a tree
structure that shows all possible counts as the leaves.

(0,0,0) (0,0,30) (0,1,0) (0,1,30) (0,2,0) (0,2,30)

(0,0,-) (0,1,-) (0,2,-)

(0,-,-)

(1,0,0) (1,0,30) (1,1,0) (1,1,30) (1,2,0) (1,2,30)

(1,0,-) (1,1,-) (1,2,-)

(1,-,-)

(-,-,-)

The preorder traversal of the tree gives internal nodes and leaves of the form
(a[1], a[2], a[3]):

(−,−,−), (0,−,−), (0, 0,−), (0, 0, 0), . . . , (0, 0, 30), (0, 1,−), (0, 1, 0), . . . , (0, 1, 30),

(0, 2,−), (0, 2, 0), . . . , (0, 2, 30), (1,−,−), , (1, 2, 30), (−,−,−)

Let a[0] encode the level in the tree, i.e. this is also the number of values not
equal to ′−′ in a. Therefore, if a[0] = l, a[l + 1], . . . a[d] are all ′−′ (as far as
implementation is concerned, they can be ignored).

(a) Assuming ni 6= 0 for all i, show that the number of nodes in the tree is
Θ(n1 × n2 × . . .× nd) for a fixed d.

(b) Given a, write a function next(a, n, d), where n contains n1, n2, . . . , nd, that
changes a to the next node in the preorder traversal of the tree. Do not explic-
itly build the tree structure, just manipulate the values in a. Test your code by
generating all the nodes of the tree in the preorder traversal.

