
Introduction to Bioinformatics Algorithms

Homework 2 Solution

Saad Mneimneh

Computer Science

Hunter College of CUNY

Problem 1: Coin Change
(a) The greedy algorithm for coin change can be described as:

G(n) = 1 +G(n− c)

where c is the largest coin value less or equal to n.

G(n)
if n > 0

then let c be largest coin value ≤ n
return 1 +G(n− c)

else return 0

Transform this algorithm into a dynamic programming algorithm to compute
G(0), G(1), . . . , G(n). What is the running time of your algorithm?

Solution: I am going to assume here that c is indexed from 0 to d − 1 with
c[0] = 1.

GreedyDP(c, d, n,G, bt)
G[0]← 0 . initialization
largestfit← 0 . largest coin we can fit now is c[0]=1
for i← 1 to n

while largestfit+ 1 < d and c[largestfit+ 1] <= i . can be replaced by if
largestfit← largestfit+ 1

G[i]← 1 +G[i− c[largestfit]]
if bt 6= 0 . do you want backtracking?

then backtrack[i]← largestfit

It is easy to show that advancing the largest fit needs to only check the next
largest coin (that’s why the while can be replaced by an if). Therefore, the
amount of work done per iteration is constant, i.e. O(1). The running time of
the algorithm is O(n).

(b) Describe a dynamic programming algorithm to solve the coin change prob-
lem in general. What is the running time of your algorithm?

Solution: As discussed in class, here we need to use the best fit coin instead of
the largest fit.

generalDP(c, d, n,G, bt)
G[0]← 0 . initialization
largestfit← 0 . largest coin we can fit now is c[0]=1
for i← 1 to n

while largestfit+ 1 < d and c[largestfit+ 1] <= i . can be replaced by if
largestfit← largestfit+ 1

min← i
bestfit← largestfit . just arbitrary choice
for j ← 0 to largestfit

if 1 +G[i− c[j]] < min
then min← 1 +G[i− c[j]]

bestfit = j
G[i]← 1 +G[i− c[bestfit]]
if bt 6= 0 . do you want backtracking?

then backtrack[i]← bestfit

Now all coin values less than or equal to the largest fit must be checked in each
iteration, for a running time of O(dn).

(c) Do some research online for an algorithm that determines, given denomi-
nations c0 = 1 < c1 < . . . < cd−1, whether the greedy coin change algorithm
works correctly. In particular, you may consider: http://www.cs.cornell.
edu/~kozen/papers/change.pdf. Implement the algorithm you find.

Solution: A coin system is canonical (always works with Greedy) iff there is
no value i in the range c2 + 1 < i < cd−2 + cd−1 such that G[i] > 1 +G[i− c[j]]
for some j. Here’s a simple implementation of this idea:

canonical(c, d)
if d < 3

then return true . every 3 coin system is canonical
GreedyDP(c, d, c[d− 2] + c[d− 1]− 1, G, 0)
for i← c[2] + 2 to c[d− 2] + c[d− 1]

for j ← 0 to d− 1
if i ≥ c[j] and G[i] > 1 +G[i− c[j]]

then return false
return true

The nested loop is O(d) time. The outer loop and the greedy algorithm are both
upper bounded by O(cd−1 + cd−2) = O(2cd−1) = O(cd−1). So the total running
time is O(dcd−1), this is the number of coins multiplied by the largest coin value.

Problem 2: Fibonacci Revisited
Consider the following algorithm:

fib(a, b, n)
while n > 0

b← a+ b
a← b− a
n← n− 1

return a

fib(n)
return fib(0, 1, n)

This algorithm requires O(n) arithmetic operations. However, since Fibonacci
numbers grow fast, it is not reasonable to assume that arithmetic operations
take constant time. Addition of b bit numbers take O(b) time (standard addi-
tion algorithm we do by hand). One can show that the nth Fibonacci number
is Θ(φn); therefore, all intermediate results while computing fib(n) need O(n)
bits. This makes the above algorithm an O(n2) time algorithm. We can do
better.

Consider the matrix:

F =
[

0 1
1 1

]
It is easy to verify that Fn1,2 is the nth Fibonacci number. This means, we
only need to multiply the matrix by itself n times, each matrix multiplication
involves 8 multiplications and 4 additions. The bottleneck is multiplication.
Assume that we can multiply two n bit numbers is O(nα) time for 1 < α < 2.
Then the total running time of this algorithm will be O(n1+α), not an improve-
ment over the O(n2) bound.

However, we can use a technique called repeated squaring. Consider the function
pow (for power).

pow(F, i) (compute F i)
if i > 0

then if i is even
then return square(pow(F, i/2))
else return F × pow(F, i− 1)

else return identity matrix

(a) What is the number of multiplications performed by this algorithm using
Big-O notation?

Solution: The power i is divided by 2 when it’s even. If this happens repeat-
edly, i.e. when i is a power of 2, then we have exactly log2 i+ 1 multiplications,
which is O(log i). Since when i is odd i−1 is even, the number of multiplications
is at most doubled. This is still O(log i).

(b) Show that loga n = o(nε) for any positive a and ε, i.e. limn→∞
loga n
nε = 0.

This is small o notation and it means that that loga n < cnε for every constant
c > 0 (not just some constant c) and large enough n.

Solution: Using l’Hospital’s rule:

lim
n→∞

loga n
nε

= lim
n→∞

a loga−1 n(1/n)
εnε−1

= lim
n→∞

a

ε

loga−1 n

nε

This can be repeated until the power of log n is negative and the limit is 0.

(c) Describe a better than O(n2) algorithm for computing the nth Fibonacci
number.

Using part (a), we can compute Fn using O(log n) multiplications. Each mul-
tiplication takes O(nα) time, where α < 2. Therefore, the running time is
O(nα log n) = o(n2), because limn→∞

nα logn
n2 = limn→∞

logn
n2−α = 0

Problem 3: Enumeration
In the previous homework, we considered the enumeration from (0, 0, . . . , 0) to
(n1, n2, . . . , nd). We now explore this enumeration using a tree structure.

For example, assume d = 3 and n1 = 1, n2 = 2, and n3 = 30. Here’s a tree
structure that shows all possible counts as the leaves.

(0,0,0) (0,0,30) (0,1,0) (0,1,30) (0,2,0) (0,2,30)

(0,0,-) (0,1,-) (0,2,-)

(0,-,-)

(1,0,0) (1,0,30) (1,1,0) (1,1,30) (1,2,0) (1,2,30)

(1,0,-) (1,1,-) (1,2,-)

(1,-,-)

(-,-,-)

The preorder traversal of the tree gives internal nodes and leaves of the form
(a[1], a[2], a[3]):

(−,−,−), (0,−,−), (0, 0,−), (0, 0, 0), . . . , (0, 0, 30), (0, 1,−), (0, 1, 0), . . . , (0, 1, 30),

(0, 2,−), (0, 2, 0), . . . , (0, 2, 30), (1,−,−), , (1, 2, 30), (−,−,−)

Let a[0] encode the level in the tree, i.e. this is also the number of values not
equal to ′−′ in a. Therefore, if a[0] = l, a[l + 1], . . . a[d] are all ′−′ (as far as
implementation is concerned, they can be ignored).

(a) Assuming ni 6= 0 for all i, show that the number of nodes in the tree is
Θ(n1 × n2 × . . .× nd) for a fixed d.

Solution: It is easy to show that the number of leaves is equal to L = (n1 +
1)(n2 + 1) . . . (nd + 1). If the tree has N nodes (including the leaves), then
definitely N ≥ L. In addition, since ni > 0, we can also show that the number
of nodes in level l is at most half the number of nodes in level l+ 1. Therefore,
the total number of nodes is upper bounded by L(1 + 1/2 + 1/4 + . . .) ≤ 2L.
So N = Θ(L). This shows that the complexity of generating nodes in the
tree is comparable to simply enumerating the leaves. We now show that L =
Θ(n1n2 . . . nd).
It is obvious that L > n1n2 . . . nd. So all we need to show is that L < cn1n2 . . . nd
for some constant c > 0. Well, ni + 1 ≤ 2ni. So L ≤ 2dn1n2 . . . nd. Fi-
nally, L = Θ(n1n2 . . . nd). Since N = Θ(L) and L = Θ(n1n2 . . . nd), then
N = Θ(n1n2 . . . nd).

(b) Given a, write a function next(a, n, d), where n contains n1, n2, . . . , nd, that
changes a to the next node in the preorder traversal of the tree. Do not explic-
itly build the tree structure, just manipulate the values in a. Test your code by
generating all the nodes of the tree in the preorder traversal.

Solution: If a is not a leaf, say a has level a[0] = l < d, then we simply replace
the first − by a 0 and increase the level by 1. This can be done by the following:
a[0] ← a[0] + 1 and a[a[0]] ← 0. On the other hand, if a[0] = d, then we need
to check a[d]. If a[d] < nd, we simply increase it by 1. Otherwise, if a[d] = nd,
then we go up one level by decreasing a[0], and check a[d − 1]. We do this
repeatedly until we find some l where a[l] < nl and increase a[l] by 1. If we ever
set a[0] = 0, then we simply stop because there is no successor (we go back to
root).

. we assume that a has been initialized such that a[0] = 0
next(a, n, d)

if a[0] < d
then a[0]← a[0] + 1

a[a[0]] = 0
return

for i← d downto 1
if a[i] < n[i]

then a[i]← a[i] + 1
a[0]← i
return

a[0]← 0

