
Introduction to Bioinformatics Algorithms

Homework 6

Saad Mneimneh

Computer Science

Hunter College of CUNY

Problem 1: Suffix trees
Describe how you can find in linear time the following, using a suffix tree data
structure:
(a) a longest match between x and y

(b) a longest unique match between x and y if it exists

(c) a longuest repeat in x

(d) a longest non-overlapping repeat in x

Problem 2: Parsimony
The following dynamic programming algorithm solves the maximum parsimony
problem for a general distance criterion and one character.

fv(a) = 0, v is a leaf labeled a

fv(a) =∞, v is a leaf not labeled a

fv(a) =
∑

w∈δ(v)

min
b∈A

[fw(b) + d(a, b)]

Mw(a) = {b : fw(b) + d(a, b) is minimal}

We seek mina∈A froot(a) and M can be used for backtracking.

(a) What is the running time and space requirement for this algorithm? Assume
|A| = r (r states), we have n leaves (objects), and m characters.

(b) Adapt this algorithm to the special case when the distance is defined as
(obtain better running time):

d(a, b) =
{

0 a = b
1 a 6= b



Problem 3: Perfect phylogeny (optional)
Consider binary characters and let 1i be the set of objects that have state 1 for
character i. Define 0i similarly.

(a) Consider the following character state matrix:

c1 c2

A 0 1
B 1 1
C 1 0

According to the condition stated in class, namely that 1i and 1j are either
disjoint or one is a subset of the other, a perfect phylogeny does not exist. How-
ever, the colored graph produced by the state matrix is acyclic, implying that
a perfect phylogeny does exist. Which interpretation is correct?

(b) Consider ordered undirected (the state tree is unrooted) non-binary charac-
ters. Show that for each character i, the state tree can be rooted in such a way
that for each binary factor j, |0j | ≥ |1j |. Hint: root the tree arbitrarily, then re-
verse edges that violate the condition, and argue that you would still have a tree.

Problem 4: Viterbi (optional)
A loaded die has probability 1/2 for 6. The probability of switching to a loaded
die is 0.05. The probability of switching to a fair die is 0.1. We observe the
following:

65116645313265124536664631636663162326455236266666625151631

Which parts of this sequence are generated by the loaded die? Use the Viterbi
algorithm to figure this out. Use the log transformation in your implementation.


