PART I
The purpose of PART I is to practice:

- input/output
- if statements and constructing the appropriate logic that is needed to solve the problem
- writing functions and passing values

Problem 1: Intervals
For this problem, assume all parameters are integers. An interval $[a, b]$ represents the set of numbers between a and b inclusive. If $a > b$, we assume that the interval (set) is empty.

(a) Write a function called intervalEmpty that takes a and b as parameters and returns true if $[a, b]$ is empty and false otherwise.

(b) Write a function called intervalIntersect that takes a, b, c, and d as parameters, and:
 - outputs the intersection of intervals $[a, b]$ and $[c, d]$ as an interval. Use $[1, 0]$ to denote an empty intersection.
 - returns the number of elements that belong to both intervals $[a, b]$ and $[c, d]$

(c) In the main function, write a program to prompt the user to input a, b, c, and d and output:
 - whether $[a, b]$ is empty or not
 - whether $[c, d]$ is empty or not
 - the intersection of $[a, b]$ and $[c, d]$ and the number of integer elements in that intersection

Example: If the two intervals are $[1, 0]$ and $[2, 3]$:

Interval $[1, 0]$ is empty
Interval $[2, 3]$ is not empty
The intersection of $[1, 0]$ and $[2, 3]$ is $[1, 0]$ with 0 integer elements
Example: If the two intervals are $[1, 10]$ and $[5, 12]$:

- Interval $[1, 10]$ is not empty
- Interval $[5, 12]$ is not empty
- The intersection of $[1, 10]$ and $[5, 12]$ is $[5, 10]$ with 6 integer elements

Example: If the two intervals are $[1, 2]$ and $[4, 6]$:

- Interval $[1, 2]$ is not empty
- Interval $[4, 6]$ is not empty
- The intersection of $[1, 2]$ and $[4, 6]$ is $[1, 0]$ with 0 integer elements

PART II

The purpose of PART II is to practice:

- loops
- simple conditionals
- writing functions and passing values

Problem 2: Fair and Square...

(a) Write a function called square2 that takes an integer n as a parameter and returns the sum of the first n odd numbers starting from 1 to and ending in $2n - 1$.

(b) Compare this function to the function square that we have seen in class. To do this, verify in main that both functions return the same value for all $n = 0\ldots100$. One way is to print the values side by side in a loop. [optional] Try to find a better way using a loop and an if statement.

Problem 3: Square root

We have seen in class a function to compute the square root of a number x based on Newton’s method:

```c
bool closeEnough(float a, float b) {
    return (-0.001<=a-b && a-b<=0.001);  
}

float sqrt(float x, float guess) {
    while (!closeEnough(guess*guess, x) {
        cout<<guess<<"\n"; //not needed, but to see        
        //how guess is changing
        guess = (guess + x/guess)/2;
        return guess;
    }
}
```

Implement a sqrt function based on the following idea: we bound the square root of x from the left and the right. Initially, the square root of x must satisfy:

\[0 \leq \sqrt{x} \leq \max(x, 1) \]

So if we initially let $a = 0$ and $b = \max(x, 1)$, then the square root of x is in the interval $[a, b]$. To assign b, an if statement can compare x to 1. Now let m be the middle point of the interval $[a, b]$ (we can use the average function to find it). While m^2 is not close enough to x we repeatedly perform the following (otherwise, we return m):

1. Update $a = 0$ and $b = \max(x, 1)$.
2. Calculate $m = (a + b)/2$.
3. If m^2 is close enough to x, return m.
4. Otherwise, update $a = m$, and go back to step 2.

```c
float sqrt(float x) {
    float a = 0, b = max(x, 1), m = (a + b)/2;
    while (!closeEnough(m*m, x) {  
        a = 0, b = max(x, 1), m = (a + b)/2;
    }
    return m;
}
```
• if \(m^2 \leq x \), we assign \(a \) the value of \(m \), i.e. the interval becomes \([m, b]\)
• if \(m^2 \geq x \), we assign \(b \) the value of \(m \), i.e. the interval becomes \([a, m]\)
• update \(m \) to be the middle of the interval \([a, b]\)

Therefore, in addition to \(m \), we need two variables to keep track of how the interval is changing.

Note 1: We exit the loop when \(m^2 \) is close enough to \(x \), say within 0.001.

Note 2: The size of the bounding interval is halved each time, but mathematically Newton’s method converges faster. To check this, insert a cout statement as illustrated above to track the iterations, and try both functions to compare the number of iterations (for the first version, you may start with \(x \) itself as the guess).

Example: Here’s how the interval and \(m \) change when computing the square root of \(x = 0.5 \).

<table>
<thead>
<tr>
<th>([a, b])</th>
<th>(m)</th>
<th>(m^2)</th>
<th>(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0, 1])</td>
<td>0.5</td>
<td>0.25</td>
<td>< 0.5</td>
</tr>
<tr>
<td>([0.5, 1])</td>
<td>0.75</td>
<td>0.5625</td>
<td>> 0.5</td>
</tr>
<tr>
<td>([0.5, 0.75])</td>
<td>0.625</td>
<td>0.390625</td>
<td>< 0.5</td>
</tr>
<tr>
<td>([0.625, 0.75])</td>
<td>0.6875</td>
<td>0.472656</td>
<td>< 0.5</td>
</tr>
<tr>
<td>([0.6875, 0.75])</td>
<td>0.71875</td>
<td>0.516602</td>
<td>> 0.5</td>
</tr>
<tr>
<td>([0.6875, 0.71875])</td>
<td>0.703125</td>
<td>0.494385</td>
<td>< 0.5</td>
</tr>
<tr>
<td>([0.703125, 0.71875])</td>
<td>0.710938</td>
<td>0.505432</td>
<td>> 0.5</td>
</tr>
<tr>
<td>([0.703125, 0.710938])</td>
<td>0.707031</td>
<td>0.499893</td>
<td>< 0.5</td>
</tr>
</tbody>
</table>

Instructions to submit homework
Have a separate program for each problem. For each program, upload it to the following website:

http://www.cs.hunter.cuny.edu/~saad/courses/c++/taxi.html

If your program compiles successfully, you will receive a 5-digit TAXI code. Put this TAXI code as a comment in the beginning of the corresponding C code file.

// TAXI code here

#include <iostream>

using ...

//the rest of the file...

Submit the file through Blackboard. You will find an appropriate column to upload it in the Grade Center under the Assignments section.