CSCI 135 Software Design and Analysis, C++
Homework 1
Due 2/14/2014

Saad Mneimneh
Visiting Professor
Hunter College of CUNY

PART I
The purpose of PART I is to practice:

e input/output

e if statements and constructing the appropriate logic that is needed to solve
the problem

e writing functions and passing values

Problem 1: Intervals

For this problem, assume all parameters are integers. An interval [a,b] repre-
sents the set of numbers between a and b inclusive. If a > b, we assume that
the interval (set) is empty.

(a) Write a function called intervalEmpty that takes a and b as parameters and
returns true if [a, ] is empty and false otherwise.

(b) Write a function called intervallntersect that takes a, b, ¢, and d as param-
eters, and:

e outputs the intersection of intervals [a,b] and [c,d] as an interval. Use
[1,0] to denote an empty intersection.

e returns the number of elements that belong to both intervals [a,b] and
[, d]

(¢) In the main function, write a program to prompt the user to input a, b, ¢,
and d and output:

o whether [a,b] is empty or not
o whether [c,d] is empty or not

e the intersection of [a,b] and [¢,d] and the number of integer elements in
that intersection

Ezample: If the two intervals are [1,0] and [2, 3]:

Interval [1,0] is empty
Interval [2,3] is not empty
The intersection of [1,0] and [2,3] is [1,0] with O integer elements



Ezample: If the two intervals are [1,10] and [5,12]:

Interval [1,10] is not empty
Interval [5,12] is not empty
The intersection of [1,10] and [5,12] is [5,10] with 6 integer elements

Ezample: If the two intervals are [1,2] and [4, 6]:

Interval [1,2] is not empty
Interval [4,6] is not empty
The intersection of [1,2] and [4,6] is [1,0] with O integer elements

PART II
The purpose of PART II is to practice:

e loops
e simple conditionals
e writing functions and passing values

Problem 2: Fair and Square...

(a) Write a function called square2 that takes an integer n as a parameter and re-
turns the sum of the first n odd numbers starting from 1 to and ending in 2n—1.

(b) Compare this function to the function square that we have seen in class.
To do this, verify in main that both functions return the same value for all
n =0...100. One way is to print the values side by side in a loop. [optional]
Try to find a better way using a loop and an if statement.

Problem 3: Square root
We have seen in class a function to compute the square root of a number z
based on Newton’s method:

bool closeEnough(float a, float b) {
return (-0.001<=a-b && a-b<=0.001);
}

float sqrt(float x, float guess) {
while (!closeEnough(guess*guess, x) {
cout<<guess<<’\n’; //not needed, but to see
//how guess is changing
guess = (guess + x/guess)/2;
return guess;

}

Implement a sqrt function based on the following idea: we bound the square
root of & from the left and the right. Initially, the square root of x must satisfy:

0 < vz < max(z,1)

So if we initially let @ = 0 and b = max(x, 1), then the square root of z is in
the interval [a,b]. To assign b, an if statement can compare z to 1. Now let
m be the middle point of the interval [a, b] (we can use the average function to
find it). While m? is not close enough to x we repeatedly perform the following
(otherwise, we return m):



e if m? <z, we assign a the value of m, i.e. the interval becomes [m, b]
e if m? >z, we assign b the value of m, i.e. the interval becomes [a, m]

e update m to be the middle of the interval [a, b]

Therefore, in addition to m, we need two variables to keep track of how the
interval is changing.

Note 1: We exit the loop when m? is close enough to x, say within 0.001.

Note 2: The size of the bounding interval is halfed each time, but mathemati-
cally Newton’s method converges faster. To check this, insert a cout statement
as illustrated above to track the ietrations, and try both functions to compare
the number of iterations (for the first version, you may start with z itself as the
guess).

Ezxample: Here’s how the interval and m change when computing the square
root of z = 0.5.

[a,b] m m~2 X

_________________________________ | R
[0,1] 0.5 | 0.25 < 0.5
[0.5,1] 0.75 | 0.5625 > 0.5
[0.5,0.75] 0.625 | 0.390625 < 0.5
[0.625,0.75] 0.6875 | 0.472656 < 0.5
[0.6875,0.75] 0.71875 | 0.516602 > 0.5
[0.6875,0.71875] 0.703125 | 0.494385 < 0.5
[0.703125,0.71875] 0.710938 | 0.505432 > 0.5
[0.703125,0.710938] 0.707031 | 0.499893 < 0.5

Instructions to submit homework
Have a separate program for each problem. For each program, upload it to the
following website:

http://www.cs.hunter.cuny.edu/ saad/courses/c++/taxi.html

If your program compiles successfully, you will receive a 5-digit TAXI code. Put
this TAXT code as a comment in the beginning of the corresponding C code file.

// TAXI code here
#include <iostream>
using ...

//the rest of the file...

Submit the file through Blackboard. You will find an appropriate column to
upload it in the Grade Center under the Assignments section.



