
CSCI 135 Software Design and Analysis, C++

Homework 1

Due 2/14/2014

Saad Mneimneh

Visiting Professor

Hunter College of CUNY

PART I

The purpose of PART I is to practice:

• input/output

• if statements and constructing the appropriate logic that is needed to solve
the problem

• writing functions and passing values

Problem 1: Intervals

For this problem, assume all parameters are integers. An interval [a, b] repre-
sents the set of numbers between a and b inclusive. If a > b, we assume that
the interval (set) is empty.

(a) Write a function called intervalEmpty that takes a and b as parameters and
returns true if [a, b] is empty and false otherwise.

(b) Write a function called intervalIntersect that takes a, b, c, and d as param-
eters, and:

• outputs the intersection of intervals [a, b] and [c, d] as an interval. Use
[1, 0] to denote an empty intersection.

• returns the number of elements that belong to both intervals [a, b] and
[c, d]

(c) In the main function, write a program to prompt the user to input a, b, c,
and d and output:

• whether [a, b] is empty or not

• whether [c, d] is empty or not

• the intersection of [a, b] and [c, d] and the number of integer elements in
that intersection

Example: If the two intervals are [1, 0] and [2, 3]:

Interval [1,0] is empty

Interval [2,3] is not empty

The intersection of [1,0] and [2,3] is [1,0] with 0 integer elements



Example: If the two intervals are [1, 10] and [5, 12]:

Interval [1,10] is not empty

Interval [5,12] is not empty

The intersection of [1,10] and [5,12] is [5,10] with 6 integer elements

Example: If the two intervals are [1, 2] and [4, 6]:

Interval [1,2] is not empty

Interval [4,6] is not empty

The intersection of [1,2] and [4,6] is [1,0] with 0 integer elements

PART II

The purpose of PART II is to practice:

• loops

• simple conditionals

• writing functions and passing values

Problem 2: Fair and Square...

(a) Write a function called square2 that takes an integer n as a parameter and re-
turns the sum of the first n odd numbers starting from 1 to and ending in 2n−1.

(b) Compare this function to the function square that we have seen in class.
To do this, verify in main that both functions return the same value for all
n = 0 . . . 100. One way is to print the values side by side in a loop. [optional]
Try to find a better way using a loop and an if statement.

Problem 3: Square root

We have seen in class a function to compute the square root of a number x

based on Newton’s method:

bool closeEnough(float a, float b) {

return (-0.001<=a-b && a-b<=0.001);

}

float sqrt(float x, float guess) {

while (!closeEnough(guess*guess, x) {

cout<<guess<<’\n’; //not needed, but to see

//how guess is changing

guess = (guess + x/guess)/2;

return guess;

}

Implement a sqrt function based on the following idea: we bound the square
root of x from the left and the right. Initially, the square root of x must satisfy:

0 ≤
√

x ≤ max(x, 1)

So if we initially let a = 0 and b = max(x, 1), then the square root of x is in
the interval [a, b]. To assign b, an if statement can compare x to 1. Now let
m be the middle point of the interval [a, b] (we can use the average function to
find it). While m2 is not close enough to x we repeatedly perform the following
(otherwise, we return m):



• if m2 ≤ x, we assign a the value of m, i.e. the interval becomes [m, b]

• if m2 ≥ x, we assign b the value of m, i.e. the interval becomes [a,m]

• update m to be the middle of the interval [a, b]

Therefore, in addition to m, we need two variables to keep track of how the
interval is changing.

Note 1: We exit the loop when m2 is close enough to x, say within 0.001.

Note 2: The size of the bounding interval is halfed each time, but mathemati-
cally Newton’s method converges faster. To check this, insert a cout statement
as illustrated above to track the ietrations, and try both functions to compare
the number of iterations (for the first version, you may start with x itself as the
guess).

Example: Here’s how the interval and m change when computing the square
root of x = 0.5.

[a,b] m m^2 x

---------------------------------|-------------------

[0,1] 0.5 | 0.25 < 0.5

[0.5,1] 0.75 | 0.5625 > 0.5

[0.5,0.75] 0.625 | 0.390625 < 0.5

[0.625,0.75] 0.6875 | 0.472656 < 0.5

[0.6875,0.75] 0.71875 | 0.516602 > 0.5

[0.6875,0.71875] 0.703125 | 0.494385 < 0.5

[0.703125,0.71875] 0.710938 | 0.505432 > 0.5

[0.703125,0.710938] 0.707031 | 0.499893 < 0.5

Instructions to submit homework

Have a separate program for each problem. For each program, upload it to the
following website:

http://www.cs.hunter.cuny.edu/~saad/courses/c++/taxi.html

If your program compiles successfully, you will receive a 5-digit TAXI code. Put
this TAXI code as a comment in the beginning of the corresponding C code file.

// TAXI code here

#include <iostream>

using ...

//the rest of the file...

Submit the file through Blackboard. You will find an appropriate column to
upload it in the Grade Center under the Assignments section.


