
CSCI 135 Software Design and Analysis, C++

Homework 8

Solution

Saad Mneimneh

Computer Science

Hunter College of CUNY

Problem 1: Two-dimensional arrays and the 15 puzzle

The 15 puzzle consist of 15 pieces numbered 1 to 15, arranged on a 4x4 board
with one free spot. The free spot allows to move the pieces to the left, right,
up, and down. The goal of the puzzle is to put it in the “solved” state:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

Consider the following class in a file called puzzle.h to represent the 15 puzzle:

#ifndef _15PUZZLE

#define _15PUZZLE

#include <iostream>

#include <string>

using std::cout;

using std::string;

class Puzzle {

private:

int a[4][4];

int i, j; //row and column of the empty spot

int correct; //number of pieces that have the correct position

public:

Puzzle();

Puzzle(const string& s); //passed by reference to avoid copy

void scramble(int n);

bool move(char c);

bool move(int n);

bool solved() {return correct=15;} //obvious!

void display();

};

#endif

PART I

For this part, you will implement the Puzzle class in a file called puzzle.c (or
puzzle.cpp).

(a) Implement the default constructor to put the puzzle in its solved state. This
also means that i and j are both set to 3, and correct is set to 15.

(b) Implement the second constructor in the following way: First the puzzle is
initialized in the same way as in the default constructor. Second, the string s

is interpreted as a sequence of characters, obtained as usual as s[0], s[1], s[2],
etc... The length of the string can be determined using the member function
length, e.g. s.length(). The constructor then calls the move function on each of
the characters of s.

(c) Implement the scramble function to repeatedly generate a random character
in the set {′l′,′ r′,′ u′,′ d′} (these stand for left, right, up, and down), and call the
move function on that character. There should be n successful moves in total
(the move function returns true upon success and false otherwise).
(d) The move (with char parameter) is the heart of this game. It should be
implemented as follows.

• The character is interpreted as described above. If the character is not in
the set {′l′,′ r′,′ u′,′ d′}, then the move is not performed and the function
returns false.

• Since the position of the empty spot is known at all times, it is easy
to determine if the given move is feasible. For example, ’l’ means move
something to the left. Therefore, there must be a piece to the right of the
empty spot.

• If the move is feasible, perform it by updating the array, the position of
the empty spot, and the number of correct positions.

• The function returns true if the move is performed and false otherwise.

(d) The move (with int parameter) determines if n is to the left, right, above, or
below the empty spot. If not, the move is not performed and the function returns
false. Otherwise, the function returns the result of the corresponding char move.

(e) Implement the display function to output the current state of the 15 puzzle
in a nice way.

PART II

For this part, you will implement the 15 puzzle game in a file called main.c (or
main.cpp).

(a) Initialize a puzzle using the default constructor. Then ask the user to input
a number n, and scramble the puzzle with n as the parameter to the function.
Finally display the state of the puzzle.

(b) Following part (a), repeatedly ask the user to input a string. If the first
character of the string is not a digit, then call the char move function on that
character. If the first character of the string is a digit, then consider at most two

characters to determine the number, and call the int move function on that num-
ber. After every successful move, display the state of the puzzle. The program
should stop when the puzzle is solved (or when the user terminates it of course).

Solution:

#include <iostream>

#include <string>

#include <cstdlib>

using std::cout;

using std::cin;

using std::string;

class Puzzle {

int a[4][4];

int i;

int j;

int correct;

void init();

bool spotCorrect(int i, int j) {return (a[i][j]==4*i+j+1);}

public:

Puzzle();

Puzzle(const string& s);

bool move(char c);

bool move(int n);

void scramble(int n);

bool solved() {return (correct==15);}

void display();

};

void Puzzle::init() {

for (int row=0; row<4; row++)

for (int col=0; col<4; col++)

a[row][col]=row*4+col+1; //should be self explanatory

i=j=3;

correct=15;

}

Puzzle::Puzzle() {

init();

}

Puzzle::Puzzle(const string& s) {

init();

for (int i=0; i<s.length(); i++)

move(s[i]);

}

void Puzzle::scramble(int n) {

char b[4]={’u’, ’d’, ’l’, ’r’};

int i=0;

while (i<n)

if (move(b[rand()%4])) //if move succeeds, increment i

i++;

}

bool Puzzle::move(char c) {

if (c==’u’ && i<3) { //empty spot is not in last row

if (spotCorrect(i+1,j)) //spot was correct

correct--;

a[i][j]=a[i+1][j];

if (spotCorrect(i,j)) //spot is now correct

correct++;

a[i+1][j]=16;

i++;

return true;

}

if (c==’d’ && i>0) { //empty spot is not in first row

if (spotCorrect(i-1,j))

correct--;

a[i][j]=a[i-1][j];

if (spotCorrect(i,j))

correct++;

a[i-1][j]=16;

i--;

return true;

}

if (c==’l’ && j<3) { //empty spot is not in last column

if (spotCorrect(i,j+1))

correct--;

a[i][j]=a[i][j+1];

if (spotCorrect(i,j))

correct++;

a[i][j+1]=16;

j++;

return true;

}

if (c==’r’ && j>0) { //empty spot is not in first column

if (spotCorrect(i,j-1))

correct--;

a[i][j]=a[i][j-1];

if (spotCorrect(i,j))

correct++;

a[i][j-1]=16;

j--;

return true;

}

return false;

}

bool Puzzle::move(int n) {

if (i<3 && a[i+1][j]==n)

return move(’u’);

if (i>0 && a[i-1][j]==n)

return move(’d’);

if (j<3 && a[i][j+1]==n)

return move(’l’);

if (j>0 && a[i][j-1]==n)

return move(’r’);

return false;

}

void Puzzle::display() {

for (int row=0; row<4; row++) {

for (int col=0; col<4; col++) {

if (a[row][col]<10)

cout<<’ ’;

if (a[row][col]==16)

cout<<" ";

else

cout<<a[row][col]<<’ ’;

}

cout<<’\n’;

}

cout<<’\n’;

}

int main() { //this is a simplified main

srand(time(0));

int i;

Puzzle p;

p.scramble(10);

p.display();

while (!p.solved()) {

cin>>i;

p.move(i);

p.display();

}

}

