CSCI 135 Software Design and Analysis, C++
 Lab 3

Saad Mneimneh
Hunter College of CUNY

Practice loops and nested loops

Lab A: Lucas numbers

Lucas numbers are defined as the following sequence:

n	0	1	2	3	4	5	6	\ldots
$\mathrm{~L}(\mathrm{n})$	2	1	3	4	7	11	18	\ldots

Write a function called lucas that accepts $n \geq 0$ as an integer parameter and returns $L(n)$.

```
int lucas(int n) {
    int a=-1;
    int b=2;
    for (int i=1; i<=n; i=i+1) {
        int c=a;
        a=b;
        b=c+b;
    }
    return b;
}
```


Lab B: Pythagoras

A pythagorian triple is a triple (a, b, c) such that $a^{2}+b^{2}=c^{2}$ and a, b, and c are integers. We will assume that $a<b<c$. For example $(3,4,5)$ is a pythagorian triple. In addition, a pythagorian triple is primitive if a, b, and c do not have a common divisor. For instance $(3,4,5)$ is primitive, but $(6,8,10)$ is not.

Your task is to output all primitive pythagorian triples with $1 \leq a, b, c \leq 100$,
(a) using three nested loops

```
int main() {
    for (int a=1; a<=100; a=a+1)
        for (int b=a+1; b<=100; b=b+1)
            for (int c=b+1; c<=100; c=c+1)
                if (c*c==a*a+b*b && gcd(a,gcd(b,c))==1)
                cout<<'('<<a<<', '<<<b<<','<<c<<"')\n';
}
```

(b) using two nested loops. Hint: you might want to use the sqrt function by including cmath (i.e. use \#include <cmath>).

```
int main() {
    for (int a=1; a<=100; a=a+1)
        for (int b=a+1; b<=100; b=b+1) {
            int c=sqrt(a*a+b*b);
            if (c*c==a*a+b*b && gcd(a,gcd(b,c))==1)
                cout<<'('<<a<<', '<<<b<<','<<c<<"')\n";
        }
}
```

Recall the function that finds the greatest common divisor of two integers:

```
int gcd(int a, int b) {
    while (b!=0) {
        int c=a;
        a=b;
        b=c%a;
    }
    return a;
}
```


Lab C: Perfect numbers

A number is perfect if it is equal to the sum of all its proper divisors. For example, 6 is perfect because the divisors of 6 are $\{1,2,3,6\}$ and $6=1+2+3$. Find the first 4 perfect numbers (including 6).

```
int main() {
    int found=0;
    for (int n=1; found<4; n=n+1) {
        int s=0;
        for (int d=1; d<n; d=d+1)
            if ( }n%d==0
                s=s+d;
        if (s==n) { //n is perfect
            cout<<n<<'\n';
            found=found+1;
        }
    }
}
// it will output:
// 6
// 28
// 496
// 8128
```

