CSCI 135 Software Design and Analysis, C++ Lab 8

Saad Mneimneh
Hunter College of CUNY

Lab A: Skolem

An infinite Skolem sequence $a[0], a[1], a[2], \ldots$ satisfies the following two conditions:

- for every $n \in N$, there exist exactly two integers i and j such that $a[i]=$ $a[j]=n$. Furthermore, $i-j=n$.
- for every $n<m$, if i and j are the smallest such that $a[i]=n$ and $a[j]=m$, then $i<j$.

Here are the first few terms:

112324356478596 ..

Given an array of size k, fill the array with the first k terms of the infinite Skolem sequence. Hint: Initialize the array to zeros. Then for every n in increasing order, find the first spot that is available, say i, and assign $a[i]$ and $a[i+n]$ the value n. But make sure not to exceed the boundary of the array.
void SkolemFill(int * a, int k) \{...\}
continue $--->$

Lab B: Imaginary numbers
Consider the following class for imaginary numbers:

```
class Im {
    double r;
    double i;
    public:
    Im() {...}
    Im(double rl) {...}
    Im(double rl, double imgnr) {...}
    void set(double rl, double imgnr) {...}
    double real() {//returns the real part}
    double im() {//returns the imaginary part}
    bool isIm() {//returns true iff imaginary part is not zero}
    void print() {cout<<r<<"+i"<<i;}
    Im add(Im n) {...}
    Im sub(Im n) {...}
    Im mul(Im n) {...}
    Im div(Im n) {...}
};
```

Complete the implementation of the class.
Note:

$$
\begin{gathered}
(a+i b)+(c+i d)=(a+c)+i(b+d) \\
(a+i b)-(c+i d)=(a-c)+i(b-d) \\
(a+i b)(c+i d)=(a c-b d)+i(a d+b c) \\
(a+i b) /(c+i d)=(a / l+i b / l)(c-i d)
\end{gathered}
$$

where $l=c^{2}+d^{2}$.

