
Introduction to Computational Biology

Homework 1 Solution

Problem 1: Biological properties of recombination

We have discussed the uniform one point recombination model in class and
argued that it satisfies only the first two of the following properties:

• Mendel’s first law: there is a 50% chance for a gene to come from either
chromosomes.

• The probability of recombination is higher for distant genes.

• Mendel’s second law: genes are asymptotically independent i.e. the prob-
ability that a recombination occurs between two genes at a large distance
is equal to p1 ·q2+p2 ·q1, where pi is the probability of the first gene coming
from chromosome i, and qi is defined similarly for the second gene. That’s
a 1/2 according to the first property.

Let’s try to satisfy all three. Consider the following model: At each position
1 . . . n along the chromosome, there is a probability p of crossing over to the other
chromosome (and hence a probability 1−p of staying on the same chromosome).
In other terms, this model assumes that the frequency of recombination is uni-
form along the chromosome (although in reality some sites are hot spots or cold
spots for recombination).

(a) What is the probability that a given gene comes from chromosome 1 and
how does it depend on p? Explain your answer.

Solution: We will assume that the recombination process is equally likely to
start with any chromosome, Pr[start X1] = Pr[start X2] = 1

2
. Under this

assumption, the recombination process is very symmetric. Consider a path (a
pattern of jumps between the two chromosomes) by which a gene comes from
chromosome 1. This path has a certain probability. There is a symmetric path
with the same probability by which the same gene comes from chromosome 2.

Figure 1: symmetric paths

Therefore, for every possible way of obtaining a gene from chromosome 1, there
is a symmetric way of obtaining the same gene from chromosome 2. Hence, the

1

probability that a gene comes from either chromosomes is 1

2
. This is independent

from the jumping parameter p.

(b) Derive an expression for the probability of recombination (or a way to com-
pute it) between two genes at a distance d as a function of d and p.

Solution: Two genes at a distance d will recombine if there is an odd number
of jumps between them. Therefore, the probability of recombination between
two genes at distnace d is

pd =
∑

k odd

(

d
k

)

pk(1 − p)d−k

Another way to look at it is by regarding the jumping process as a Markov chain
with two states X1 and X2 and the following transitional probability matrix

P =

[

1 − p p
p 1 − p

]

Then the probability of being in state X2 after d steps given that we start at X1

is P d
12. Similarly, the probability of being in state X1 after d steps given that

we start at X2 is P d
21. The probability of starting at X1 is 1

2
(see part (a), it is

the same as the probability of a gene coming from chromosome 1). Therefore,
pd = 1

2
P d

12 + 1

2
P d

21 = P d
12, because P is symmetric (P12 = P21).

(c) What values of p satisfy the three biological properties listed above?

Solution: We can see that for p < 1

2
, all three properties will be satisfied since

the first property is satisfied regardless of what p is (see part (a)), and the
probability of recombination increases with d until it hits 1

2
for large d where

the genes act as if they are independent.

Theoretically speaking, for p < 1, we expect that the probability of recombina-
tion P d

12 will converge to 1

2
. This is a property of Markov chains, where P d con-

verges to the steady state probabilities of the states X1 and X2, limd→∞ P d =
[

1

2

1

2
1

2

1

2

]

.

The convergence will not occur when p = 1, because in this case we will have a
periodic Markov chain with period 2 (a state can only be revisited at even inter-
vals of steps). Intuitively, p = 1 means that we always jump, so the probability
of recombination is 0 for even d and 1 for odd d (no convergence).

It would be interesting to explain why p < 1

2
satisfies the second property (i.e.

probability of recombination increases with distance), whereas p ≥ 1

2
does not

(oscillates). The key is in the evaluation of the expression:

2

pd =
∑

k odd

(

d
k

)

pk(1 − p)d−k

Instead of explicitly evaluating the above expression, we can express pd in terms
of pd−1. Note that

pd = p(1 − pd−1) + (1 − p)pd−1

Therefore, pd = p+(1−2p)pd−1. From this recurrence, and the fact that p1 = p,
we can compute

pd =
1 − (1 − 2p)d

2

When p < 1/2, (1−2p) is positive and, therefore, pd increases to eventually 1/2.
When p > 1/2 (but less than 1), (1 − 2p) is negative and, therefore, (1 − 2p)d

alternates between positive and negative depending of whether d is even or odd
respectively, but pd will also converge to 1/2.

Problem 2: DNA coverage

Many DNA sequencing techniques rely on cutting the DNA into many overlap-
ping fragments. This exercise should help you understand how many fragments
are needed. Assume we have n fragments of length l each and a DNA sample of
total length T . Assume further that the position of a fragments along the DNA
is uniformly random.

(a) Show that the expected number of bases that are not covered by fragments
is approximately Te−nl/T . Hint: Let Xi be an indicator random variable that
base i is not covered, i.e. Xi = 1 iff base i is not covered. Compute E[Xi] and
then use linearity of expectation.

Solution: E[Xi] = P (Xi = 1). The probability that a fragment covers base i
is approximately l/T (if the base is at the extremity this is not true). There-
fore, P (Xi = 1) = (1 − l/T)n = (1 − nl/Tn)n ≈ e−nl/T . Using linearity of
expectation, we get Te−nl/T .
(b) Let n = αT/l. How big should α be?

Solution: The above becomes Te−α. So if we want an ǫ fraction not to be cov-
ered, we need to choose α such that α = log 1/ǫ. This is how much redundancy
we will need.
(c) Given a fragment, what is expected number of overlapping fragments? What
is the probability distribution for that number (this is needed to detect a pos-
sible repeat).

Solution: A fragment overlaps a given fragment with probability approximately
2l/T . So the expected number of fragments that overlaps a given one is 2nl/T =
2α. The probability distribution is the binomial, but if n ≫ 2l/T , it can be
approximated by a Poisson with parameter 2α.

3

Problem 3: Shortest Covering String

Recall the shortest covering string problem we described in class. The goal is to
find a shortest string over the alphabet of probes that covers all the fragments.
A string S is said to cover a fragment f if S has a substring that contains the
exact set of probes in f (order and multiplicity are ignored).

Example:

f1 : {A,B}, f2 : {A,C}

The string ABAC is a covering string for f1 and f2. However, this string is
not the shortest possible. Since the order of probes is not important, BAC,
for instance, is also a covering string. In BAC the substring BA contains the
probes {A,B} of f1 and the substring AC contains the probes {A,C} of f2. In
BAC both f1 and f2 are covered by substrings (BA and AC respectively) that
do not contain probe repetitions.

Construct an example where, in the shortest covering string, one fragment must
be covered by a substring that contains a probe repetition. This is not trivial!
Solution: Consider the following instance of the problem:

C1 : {A,B}
C2 : {A,C}
C3 : {A,D}
C4 : {A,E}
C5 : {A,B,C,D,E}

The thing to note about this instance is that a shortest covering string for C1,
C2, C3, and C4 is also a covering string for C5. Therefore, we will focus on the
shortest covering string for the first four probes only.

The shortest covering string must have at least one occurrence of each of B, C,
D, and E.

Moreover, the shortest covering string must have two occurrences of A that are
not the start or the end of the string. Proof: By contradiction. Assume that
the shortest covering string has at most one A that is not the start or end of
the string. Therefore, the shortest covering string has at most three As, two
of them are at the extremities of the string. We need to cover C1 : {A,B},
C2 : {A,C}, C3 : {A,D}, and C4 : {A,E}. Therefore, the middle A must cover
two clones, and each A at one extremity must cover one clone. Without loss of
generality, the shortest covering string looks like AB...CAD...EA. But then we
can obtain a shorter covering string by droping the last A and moving E to the
beginning: EAB...CAD....

Therefore, the shortest covering string must have a length of at least 6 with

4

at least two As being not at the start or end of the string. As a result, any
shortest covering string must have the form −A − −A−, where the four − are
filled arbitrarily with B, C, D, and E, because this form has exactly length 6.

Therefore, C5 will be covered by a substring (the whole string in this case) that
contains a repetition of A.

Problem 4: Shortest Superstring

Construct a shortest superstring for all the binary strings of length 4, i.e. 0000,
0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101,
1110, 1111. Hint: you will know it is shortest if, starting with some pattern of
4 bits, it requires only 1 bit to cover an additional pattern.

Solution: A possible shortest superstring of length 19: 0100001110110010101.
The length 19 is also a lower bound on any superstring for this problem, because
the best thing we can do is start with one string of 4 characters, and then add
1 character for each additional string for the remaining 15 strings.

In general, for any k, the lower bound is k + 2k − 1. But the question is: Can
we always construct a superstring of length k + 2k − 1 for all binary strings of
length k? The answer is yes...

Problem 5: Circular DNA alignment

Consider two circular DNAs x and y of length m and n respectively. We are
after the optimal global alignment of x and y. This can be obtained as follows:
Consider a circular shift of x, xi...xmx1...xi−1 for some 1 ≤ i ≤ m. Consider
a circular shift of y, yj ...yny1...yj−1 for some 1 ≤ j ≤ n. Find their optimal
global alignment, and repeat for every possible pair of circular shifts of x and
y. Finally pick the highest scoring alignment. Since there are m circular shifts
of x and n circular shifts of y, the above algorithm will take O(m2n2) time.

(a) Design an O(mn2) time algorithm that will find the optimal global align-
ment of two circular DNAs x and y.

Solution: Consider an optimal circular alignment of x and y. If we cut the
circular alignment at x1, we obtain an alignment of x1...xm with some circular
shift of y that has the same score as the score of the optimal circular alignment.
Therefore, to find the optimal circular alignment it is enough to compute the
optimal scores for the alignments of x1...xm with all circular shifts of y and
return the alignment corresponding to the best score. So we compute n dynamic
programming tables Ai, each of which takes O(mn) time. Then we pick the
highest score among the Ai(m,n) in O(n) time. The total time so far is O(mn2).
We need an additional O(m + n) to obtain the alignment itself, but this does
not change the asymptotic bound of O(mn2).

5

(b) [optional] Can you obtain the optimal global alignments for all pairs of cir-
cular shifts (i.e. mn) of x and y in O(mn2 + nm2)?

Solution: We can build n tables A1, ..., An for aligning x1...xm with the n
circular shifts of y1...yn. We do the same for the reverse of x and y, i.e. we
build n tables A′

1, ..., A′

n for aligning xm...x1 with the n circular shifts of yn...y1.
This so far takes O(mn2) time.

Ak(i, j) is the optimal score of aligning x1...xi with the jth prefix of the kth

circular shift of y. Similarly, A′

k(i, j) is the optimal score of aligning xm...xi

with the jth suffix of the kth circular shift of y.

Now observe that an alignment of a circular shift of x, xi...xmx1...xi−1 with a
circular shift of y, yj ...yj−1 corresponds to an alignment of xi...xm with some
suffix yj ...yk of the kth circular shift of y followed by an alignment of x1...xi−1

with some prefix yk+1...yj−1 of the (k + 1)st ciruclar shift of y. We can try all
the n possibilities for k and pick the best one, each of which takes O(1) time
given the information we pre-computed above.

Therefore, after the pre-computation step, the score of each of the mn align-
ments can be computed in O(n) time, and each alignment can be obtain in
O(m + n) time (by obtaining the actual alignments for each of the two highest
scores of the sub-alignments), resulting in O(m + n) time for each of the mn
alignments. The total running time of the algorithm is therefore: O(mn2) +
mn.O(m + n) = O(mn2 + n2m)

6

