
Computational Biology
Lecture 10: Forward and backward evaluation, HMM training

Saad Mneimneh

We have seen in the previous lecture how to obtain the most probable path for a sequence x1...xn using the Viterbi
decoding algorithm. We now move the the question of evaluation: Given a sequence x, what is p(x)? We know how to
compute p(x, π) for a given π, but our difficulty now lies in the fact that we do not know the path π that generated x;
therefore, we have to consider all of them and compute p(x) =

∑
π p(x, π). Of course finding p(x, π) for every possible

π is not efficient since we have an exponential number of paths.

Forward evaluation

Luckily, p(x) can itself be calculated using a similar dynamic programming procedure to the Viterbi algorithm,
replacing the maximization steps with sums. This will be called the forward algorithm. Let fl(i) to be the probability
p(x1...xi, πi = l). Then we can define fl(i) as

fl(i) = el(xi)
∑

k

fk(i− 1)akl

This is simply saying that the probability of obtaining x1...xi and ending in state l is the probability of obtaining
x1...xi−1 and ending in any state k, then making a transition to state l, and emitting xi in state l.

A mathematical derivation for the above equation is similar to that of vl(i) for Viterbi. Just replace the max with a∑
. The forward evaluation algorithm is shown below:

• Initialization
f0(0) =1, fk(0) = 0 for k > 0

• Main iteration
for i = 1…n
fl(i) = el(xi).Σk (fk(i – 1).akl)

• Termination
p(x) = Σk fk(n)ak0

Figure 1: Forward evaluation

Again, if there is no end state, then the term ak0 in computing p(x) is omitted.

Backward evaluation

We revisit here the question of obtaining the most probable path. We know that we can compute the most probable path
and its probability using the Viterbi algorithm. What we question here is whether the most probable path is actually
what we want. What if there are many paths with almost the same high probability? Then the most probable path is
not necessarily the one we want.

The most probable path might not be the most appropriate basis for further inference about the sequence x1...xn.
For instance, we might want to know the most probable state for an observation xi, i.e. what is the highest probable
state that produced xi? More generally, we are interested in finding p(πi = k|x1...xn). Let’s see how to compute this:

p(πi = k|x) =
p(πi = k, x)

p(x)

We know how to compute p(x) using the forward algorithm. Let’s see how we can compute p(πi = k, x).

p(πi = k, x) = p(x1...xi, πi = k)p(xi+1...xn|x1...xi, πi = k)
= p(x1...xi, πi = k)p(xi+1...xn|πi = k)
= fk(i).bk(i)

1

The first term is just fk(i) and denote the second term by bk(i). bk(i) is the probability of obtaining xi+1...xn given
that we are in state k at xi. bk(i) can be computed in terms of bk(i + 1) as shown below, hence the name Backward
evaluation.

bk(i) =
∑

l

aklel(xi+1)bk(i + 1)

This is saying that the probability of obtaining xi+1...xn given that we start in state k is equal to the probability of
transitioning from state k to some state l, emitting xi+1 in state l, and then obtaining xi+2...xn given that we start in
state l (note how we are computing it backward). The following figure illustrates the backward evaluation algorithm.

• Initialization
bk(n) =ak0 for all k

• Main iteration
for i = n – 1…1
bk(i) = Σl aklel(xi+1)bl(i+1)

• Termination
p(x) = Σl a0lel(x1)bl(1)

Time = O(k2n)
Space = O(kn)

xn+1xnxn-1x2

0 a00

1 a10

k ak0

.

.

.
. . .

n – 1

xn+1xnxn-1x2

0 a00

1 a10

k ak0

.

.

.
. . .

n – 1

Figure 2: Backward evaluation algorithm

Problem of very small numbers

The decoding and evaluation algorithms presented so far suffer from a severe practical problem which is that mul-
tiplying many probabilities always yields very small numbers that will give underflow error on any computer. We can
solve this problem by performing the algorithms in log space (transforming multiplication into summation).

log space Viterbi
Let Vl(i) = log vl(i). Then

Vl(i) = log(el(xi)maxk(vk(i− 1)akl))
= log el(xi) + log maxk(vk(i− 1)akl)
= log el(xi) + maxk log(vk(i− 1)akl)
= log el(xi) + maxk(log vk(i− 1) + log akl)
= log el(xi) + maxk(Vk(i− 1) + log akl)

log space Forward
Let Fl(i) = log fl(i). Then

Fl(i) = log(el(xi)
∑

k(fk(i− 1)akl))
= log el(xi) + log

∑
k(fk(i− 1)akl)

6= log el(xi) +
∑

k log(fk(i− 1)akl)
but = log el(xi) + log

∑
k 2Fk(i−1)+log akl (assuming log base 2)

2

HMM learning

Probably the most difficult problem faced when using HMMs is that of specifying the model in the first place. There
are two parts to this of course: the design of the structure, what states there are and how they are connected; and the
assignment of parameter values, the transition and emission probabilities akl and ek(b). In this section we discuss the
parameter estimation problem.

Let θ be the parameters of the HMM (transition probabilities and emission probabilities, i.e. all the a’s and e’s).
Our framework for estimation will be as follows: Given independent training sequences x1, ..., xn, we would like to find
θ that will maximize p(x1...xn|θ) =

∏
i p(xi|θ). In this case, θ will be called the maximum likelihood parameters (it

maximizes the likelihood of obtaining the training sequences). The rational is the following: if we believe that these
sequences should be obtained by the model, let’s find the parameters that will maximize the probability of obtaining
the sequences.

State sequence is known
Assume that the state path for each xi is known. For instance, we have sequences where all CpG islands are labeled.

This is often the case with the estimation problem. Since the paths are known, we can compute Akl, the number of
transitions from state k to state l in the training sequences, and Ek(b), the number of times b was emitted in state k in
the training sequences. Then we can shown that the maximum likelihood parameters are given by:

akl =
Akl∑
l′ Akl′

ek(b) =
Ek(b)∑
b′ Ek(b′)

What we are basically doing here is estimating the probabilities from counts. We now prove that this estimation produces
the maximum likelihood probabilities. Assume that we are looking at the outcomes of n independent observations and
we count ni observations for outcome i,

∑
i ni = n. Consider the parameters θML = {θML

i = ni

n } assigning a probability
ni

n for outcome i. We need to prove that p(x1...xn|θML) > p(x1...xn|θ) for any θ 6= θML. It will be equivalent to prove

that log p(x|θML)
p(x|θ) > 0.

log p(x|θML)
p(x|θ) = log

∏
i
(θML

i)ni∏
i
θ

ni
i

=
∑

i ni log θML
i

θi

=
∑

i nθML
i log θML

i

θi

= n
∑

i θML
i log θML

i

θi
> 0

The last summation is the relative entropy of θML and θ which is always positive, and 0 iff θML = θ (information
theory).

There are some problems associated with this approach: maximum likelihood estimation is vulnerable for overfitting
if we have insufficient data. For example, if state k was never used in the set of training sequences, then akl will be zero
for all l and similarly ek(b) will be zero for all b. In order to avoid such a situation, we can start with some pseudocounts
rkl for Akl and rk(b) for Ek(b). Large pseudocounts indicate a strong prior belief about the probabilities (it will require
more data to modify it), while small pseudocounts are used to avoid zero probabilities. The new formulas for akl and
ek(b) are given as follows:

akl =
Akl + rkl∑
l′ Akl′ + rkl′

ek(b) =
Ek(b) + rk(b)∑
b′ Ek(b′) + rk(b′)

Consider the example of the dishonest casino. We can start with the following pseudocounts:

r0F = r0L = rF0 = rL0 = 1 [avoid zero probability]
rFL = rLF = rFF = rLL = 1 [avoid zero probability]
rF (1) = rF (2) = ... = rF (6) = 20 [strong belief that fair is fair]
rL(1) = rL(2) = ... = rL(6) = 5 [wait and see how loaded it is]

3

State sequence is unknown
What if a new species with different distribution of CpG islands comes in? Although we can obtain some genomic

sequences for the new species, these genomic sequences are not labeled. How can we train the HMM to recognize the
new CpG islands?

This is an example of training HMMs without knowing the actual state paths. In general, we need to find the
maximum likelihood parameters θ for a set of training sequences without knowing the paths.

A famous training algorithm is known as the Baum-Welsh algorithm and is depicted below:

Baum-Welsh training

start at iteration 0 with some θ, call it θ0

L0 ← log p(x1, ..., xn|θ0)
i ← 0
repeat

i ← i + 1
Ai

kl ← E[Akl|x1, ..., xn, θi−1] (expected value)
Ek(b)i ← E[Ek(b)|x1, ..., xn, θi−1] (expected value)
calculate θi using maximum likelihood estimators from counts Ai

kl and Ek(b)i as before
Li ← log p(x1, ..., xn|θi) (new likelihood)

until Li − Li−1 < threshold

The Baum-Welsh algorithm start with an arbitrary θ and iteratively computes a new θi+1 based on estimation from
counts Akl and Ek(b), which are computed as the expected value of the corresponding counts using θi. The algorithm
stops when the difference in the likelihood of the system is below a fixed threshold. Baum-Welsh is a special case of a
general algorithm known as Expectation Maximization (EM). EM guarantees that p(X|θi+1) ≥ p(X|θi). It will therefore
converge to a local maximum (not necessarily the global maximum).

The heart of the Baum-Welsh algorithm is to compute E[Akl|x1, ..., xn, θi−1] and Ek(b)i ← E[Ek(b)|x1, ..., xn, θi−1].
Let’s see how these two expectations can be computed. We will start with the first one.

E[Akl|x1, ..., xn, θ] =
∑

j E[Aj
kl|xj , θ] by linearity of expectation

E[Aj
kl|xj , θ] =

∑
i E[# of k → l at xj

i |xj , θ] by linearity of expectation

E[# of k → l at xj
i |xj , θ] = p(k → l at xj

i |xj , θ) indicator random variable

p(k → l at xj
i |xj , θ) = p(πi = k, πi+1 = l|xj , θ)

p(πi = k, πi+1 = l|xj , θ) = p(πi = k, πi+1 = l, xj |θ)/p(xj |θ)
p(πi = k, πi+1 = l, xj |θ) = f j

k(i)aklel(xi+1)jbj
l (i + 1)

Where Aj
kl is the expected number of transitions from k to l in sequence xj , f j

k() and bj
k() are the forward and backward

probabilities at state k for xj .
Putting all of the above together, we obtain:

E[Akl|x1, ..., xn, θ] =
∑

j

1
p(xj |θ)

∑

i

f j
k(i)aklel(x

j
i+1)b

j
l (i + 1)

Similarly, we can show that

E[Ek(b)|x1, ..., xn, θ] =
∑

j

1
p(xj |θ)

∑

i|xj
i
=b

f j
k(i)bj

k(i)

Another training algorithm that avoid employing the forward and backward algorithms is known as Viterbi training,
depicted below:

Viterbi training

start at iteration 0 with some θ, call it θ0

i ← 0
repeat

i ← i + 1
Ai

kl ← number of transitions k → l on the most probable paths for x1, ..., xn using θi−1

Ei
k(b) ← number of times k emits b on the most probable paths for x1, ..., xn using θi−1

calculate θi using maximum likelihood estimators from counts Ai
kl and Ek(b)i as before

until none of the optimal paths changes

4

Although Viterbi training avoids performing the forward and backward algorithms, it performs less well than Baum-
Welsh in general. The reason for this being that Viterbi training only considers the counts on the optimal paths. In fact,
it is not maximizing the true likelihood p(x1, ..., xn|θ) anymore. It makes sense to use Viterbi training for simplicity,
especially if one is only using Viterbi decoding to infer knowledge about the sequences.

References

Durbin R. et al, Biological Sequence Analysis, Chapters 3 & 11.

5

